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Solutions

Problem 6. Let f: (0,00) — R be a continuously differentiable function, and let b > a > 0 be real
numbers such that f(a) = f(b) = k. Prove that there exists a point £ € (a, b) such that

f&) —=¢f'(§) =k

(proposed by Alberto Cagnetta, Universita degli Studi di Udine)

Solution. Observe that if we consider g(x) = f(z)/x and take its derivative, we get

of'(@) — ()

g'(z) o

where the numerator is almost the expression we have in the problem.
Now we apply Cauchy’s theorem to the functions g(x) = f(z)/x and h(z) = 1/z, well-defined
over [a,b]. This gives us the existence of a value £ € [a, b] such that

g9(a) —g(b) _ 4'(©)
h(a) —h(b)  W(&)
Here, 1
g
and

which concludes the proof.



Problem 7. Let Z-( be the set of positive integers. Find all nonempty subsets M C Z.q satisfying
both of the following properties:

(a) if z € M, then 2x € M,

Tty

(b) if z,y € M and x + y is even, then e M.

(proposed by Alexandr Bolbot, Novosibirsk State University)

Solution. Note that M is closed under addition since x 4+ y = @ Therefore it is closed under
multiplication by an arbitrary natural number. Also, M contains some odd numbers since x € M
== % = ‘% € M, and we can repeat this until all factors of 2 are removed from a number.

Let d be the greatest common divisor of all members from M. Then M C dZ-y and d is odd.

Since d can be represented in the form
d=v1a1 + V20 + ... + Ul — V141 — Vk+20k+2 — - .. — Unly

for some a; € M and v; € Z~g, there exist two members of M with difference d.

Let ¢ be the minimal element of M, ¢ < a, and a,a + d € M. We choose the largest x € M such
that < a. Then the only elements of M in the interval [z, a + d] are z, a, and a + d, since M C dZ.
Meanwhile, x < ’“"TJ’“ < a, so x + a must be odd, hence x + a + d is even, and then x < %i <a+d
means = a — d. Thus, the following implication holds:

(a,a+de Mand c<a) = a—de M.

Similarly, by setting x € M to be the smallest such that © > a (we know that such an element
exists, since 2a € M), we obtain

a—da€eM — a+de M.

We thus get that M is obtained as the set of elements of the arithmetic progression ¢ + kd
(k € Z>p). Obviously, this set satisfies both of the properties (a) and (b). Hence, we have proved that
M satisfies these properties if and only if M = {nd | m < n € N} for some m € N and odd d.



Problem 8. For an n x n real matrix A € M,(R), denote by AR its counter-clockwise 90° rotation.
For example,

3 69
=12 5 8
1 47
Prove that if A = AR then for any eigenvalue X\ of A, we have Re A = 0 or Im \ = 0.
(proposed by Jan Kus$, University of Warwick)

Solution. If A = 0, the claim holds as 0 € R. Assume A # 0 is an eigenvalue of A with a
corresponding eigenvector x € C™ \ {0}.
We will first express the operation A — AR algebraically. The element at position (4, ) in A ends
up at position (n + 1 — j,i) in AR. Thus, the rotation is defined by the relation (AR); ; = A; 11
Let J be the matrix where J; ; = 6"177 The operation of transposing A and then reversing the

(2
rows gives the matrix JA'. The (7, 5)-th element of this matrix is

JAT Z Jz k 7j = (AT)n—l—l—i,j - Aj,n—i—l—i-

This matches the definition of AR, so we get the identity AR = JAT. Note that the matrix J is
symmetric (J = J') and it is its own inverse (J% = I).
The given condition A = AR thus means A = JAT. Left-multiplying by J yields

JA=J(JAT) = (JHAT = AT, (%)

Now, consider the standard Hermitian inner product (u,v) = v*u on C". We evaluate (Az, Az) in
two ways. First, using our choice of x as an eigenvector corresponding to A:

(Az, Az) = (Az, Ar) = [AP*[||]*.
Second, using the adjoint property and (x):
(Az, Az) = (A*Az,z) = (AT Az, 2) = (JA(\x),2) = AN(J Az, 2) = \?(Jx, 7).

Together, these give us |\?||z]|*> = N} (Jx, ).

The term (Jx,x) is real, since (Jx,x)* = (J*z,z) = (Jx,x) because J is real and symmetric.
Since A # 0 and z # 0, the left side |A\|]?||z||* is a positive real number. This implies that A\*(z, Jx)
must also be a positive real number. And as (z, Jx) is real, so is \°.

Thus, either X is real (if A2 > 0) or its real part is 0 (if A < 0). This completes the proof.



Problem 9. Let n be a positive integer. Consider the following random process which produces a
sequence of n distinct positive integers X1, Xo, ..., X,.

First, X, is chosen randomly with P(X; = i) = 27 for every positive integer 7. For 1 < j <n —1,
having chosen X1, ..., X, arrange the remaining positive integers in increasing order as n; < ng < ---,
and choose X1 randomly with P(X,,; = n;) = 27* for every positive integer i.

Let Y,, = max{Xy,..., X,}. Show that

where E[Y,,] is the expected value of Y,,.
(proposed by Jan Ku$ and Jun Yan, University of Warwick)

Solution 1. For each j € [n] ={1,2,...,n}, let Y; = max{X;,...,X;}. We use induction on j to
show that ,
j 4
21
E[Y;] = E 5T for all j € [n].

i=1

The base case 7 = 1 follows easily from definition. _
For the inductive step, it suffices to show that E[Y;;; — Y]] = % for every j € [n — 1]. Note
that Y11 # Y; if and only if X;; > Y; = max{Xy,..., X,}, in which case Y11 = X;4;. Thus,

ElY;1 =Y =PX; > Y] E[Xj0 =Y | X4 > Y.

To compute P[X 1 > Y], note that for any fixed pairwise distinct positive integers ay, . .., a; and
a > max{ai,...,a;},
P[(Xl, . ,X]’Jrl) = (CL, at, ... ,CLJ')] = ]P)[(Xl, . ,Xj+1) = (CLl, a,... 7CLJ)]/Q
= ]P)[(Xl, ce ,Xj+1) = (al, as, a, ... ,CL])]/4
= :P[(Xl,...,XjJrl) = (al,...,aj,a)]/Qj.

Therefore, summing over all possible ay,...,a; and a > max{ay,...,a;}, we see that

2J 27
3 Z pr— " 1 — .
L2 21

PXj > Y] =

To finish, it is easy to see that

t

2t:2.

E[Xjn =Y | Xj0 > Y] :Zt'P[Xj+1:Y}‘+t|Xj+1 > Y] :Z
t=1

t=1
Solution 2. Since Y,, takes values in Z-,
E[Y,] =) P[Y, > k].
k=1

For each k € [n], P[Y,, > k] = 1, while for each k > n,

n 1
P[YnZk]zl—P[Yn<k]=1—P[X1,---,Xn<k]:1_H<1_2k—i)‘
i=1



Note that this formula also works for every k € [n], as the ¢ = k term in the product is 0. Thus, it

suffices to show that N o n
22’—1 Z( H( 2’“1)).

k i=1

The case of n =1 is easy to verify. Using induction on n, it suffices to show that for every n > 2,

1 [e's) n—1 1 n 1 00 1 n—1 1
1L~ (H (1_2k—z)_H(1_2k—i)> :Z<2k—nH(1_2k—i)>'
2n k=1 =1 =1 k=1 =1

Indeed, for every N > n, after multiplying by 1 —

2—n, the sum on the right telescopes as

(-2 () 2 (-2 C-2)) -

SN (B ()

i=1 =1

Taking N to infinity finishes the proof.
Solution 3 (sketch). It can be shown by induction or another method that for any sequence of
positive integers a1 < ag < - -+ < Gy,

n

PUX, .. X} = {ar, e} =2 ST 1).

=1

For any a1 < as < -+ < ay, let dy = a; and d;y1 = a;41 — a; for i € [n — 1], so

Y (e l—i)ds o
PHUXy, ..., X} ={di,dy +do,....dy +---+d,}]=2 & Tl -0,
i=1
Note that (ai,...,a,) = (di,...,d,) is a bijection between strictly increasing sequences in Zsq of
length n and (Z>0) so, using >. 2! = z/(1 — x) and >_ iz’ = 2/(1 — x)?, we get
i>1 i>1
. " - 3 (n+1-5)d
Ev,) =[] -1 > (Z di) 2 = ]
i=1 dyyendn>1 \i=1
_ 2 _ 1 o—(n+1-1i)d; —(n+1—y5)d; - .= :
[T -3 (e [T et ) == 3052
=1 =1 dlzl ];A’L djzl =1



Problem 10. For any positive integer N, let Sy be the number of pairs of integers 1 < a,b < N
such that the number (a? + a)(b* + b) is a perfect square. Prove that the limit
SN

o

exists and find its value.

(proposed by Besfort Shala, University of Bristol)

Solution. Throughout the solution, we use the Vinogradov notation A < B to mean A = O(B),
which in turn means that there exists a constant C' > 0, independent of the quantities A and B, such
that |A| < C|B|, on the entirety of the domain where A and B are defined (for us, this will always be
the interval [1,00).)

We will show that the limit equals 1, corresponding to the trivial solutions a = b. Note that
(a® + a)(b* + b) is a perfect square if and only if a® + a = dz? and b* + b = dz? for some square-free
d and zq,z9 € Z~o. From this point on, all sums over d will be over square-free positive integers.
Multiplying the equations by 4 and setting y; = 2z;, we get

Sy = Z Cd(N)2 + O(l),

d< N2

where c4(N) is the number of solutions to (2k +1)? —dy? =1 with 1 <k < Nand 1 <y < N/2
with y even. Other than for the purpose of identifying the trivial solutions, we will work with Pell’s
equation 22 — dy? = 1 with 1 < 2,y < N. Split the sum as

DN+ D N

d< N? d<N?
ca(N)<1 cg(N)>1

Note that if d > N, then the size of the second solution zy = 22 + dy? (coming from z, + yoV/d =
(21 + y1V/d)?, where 21 +y1/d is the fundamental solution) is > d >> N. Hence we may assume that
d < N if ¢g(N) > 1 (with a suitable choice of hidden constants). Denote the second sum by E (for
error, which we will bound momentarily). The first sum is easily manipulated into being asymptotic
to N (up to the error F), using the fact that fixing 2 = 2a + 1 < 2N + 1 fixes the square-free d and
the square y?, namely

N

Y wN) =" > Xearp-arm1 +O(E) =Y Xeary-1—42 + O (E) = N + O(E).

d< N? d<N? 1<a<N a=1 dy
ca(N)<1 1<y<§

Here x. denotes the characteristic function (taking the value 0 if - is not satisfied, and 1 otherwise).

Now we bound the error sum E. Note that solutions to Pell’s equation 2% — dy? = 1 grow
exponentially, hence we have c4(N) < log N. This means we may assume that N > d > N7 for
some small enough fixed 6 > 0, since the contribution of d < N'79 is bounded by N'~°log N. By
2% — dy? = 1, we have that d > N'79 implies y < N/2+7,

Fixing each y < N?%? gives < N'79 choices for = (hence also for d). So we may assume
N240 > 4> N9/2 since the contribution of y < N2 is bounded by N'=%/2,

By placing z in residue classes modulo y? and splitting the interval [1,2N + 1] into intervals of
length 2, we get that each choice of N%/? < y < N/ gives < Ng(y)/y* choices for z (hence
also for d) by y* | * + 1, where g(y) = {1 <z < y?: 2> +1 = 0 (mod %*)}|. By elementary
number theory, ¢ is multiplicative and g(p*) < 2 for all prime powers p*. In particular we obtain



g(n) < 7(n) < nf for any € > 0 (this is not hard to prove directly for g, but may be used as a
well-known fact for the divisor function 7). Therefore the contribution of such y is

N
< Z ng) < N1—6/2+a7
)
N5/2<<y<<N1/2+§

which is acceptable by choosing € > 0 small enough. We conclude that Sy = N(1 + o(1)), as desired.

Remark. There is a secondary infinite family of solutions of “size” v/N, namely given by a = 4b(b+ 1). This
shows that

> 0.

! Sy — N
im sup
N—o0 \/N



