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Solutions

Problem 6. Let f : (0,∞) → R be a continuously differentiable function, and let b > a > 0 be real
numbers such that f(a) = f(b) = k. Prove that there exists a point ξ ∈ (a, b) such that

f(ξ)− ξf ′(ξ) = k.

(proposed by Alberto Cagnetta, Università degli Studi di Udine)

Solution. Observe that if we consider g(x) = f(x)/x and take its derivative, we get

g′(x) =
xf ′(x)− f(x)

x2
,

where the numerator is almost the expression we have in the problem.
Now we apply Cauchy’s theorem to the functions g(x) = f(x)/x and h(x) = 1/x, well-defined

over [a, b]. This gives us the existence of a value ξ ∈ [a, b] such that

g(a)− g(b)

h(a)− h(b)
=

g′(ξ)

h′(ξ)
.

Here,

g′(ξ)

h′(ξ)
=

ξf ′(ξ)−f(ξ)
ξ2

− 1
ξ2

= f(ξ)− ξf ′(ξ)

and
g(a)− g(b)

h(a)− h(b)
=

f(a)
a

− f(b)
b

1
a
− 1

b

= k,

which concludes the proof.
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Problem 7. Let Z>0 be the set of positive integers. Find all nonempty subsets M ⊆ Z>0 satisfying
both of the following properties:

(a) if x ∈ M , then 2x ∈ M ,

(b) if x, y ∈ M and x+ y is even, then
x+ y

2
∈ M .

(proposed by Alexandr Bolbot, Novosibirsk State University)

Solution. Note that M is closed under addition since x+ y = 2x+2y
2

. Therefore it is closed under
multiplication by an arbitrary natural number. Also, M contains some odd numbers since x ∈ M
=⇒ x+2x

2
= 3x

2
∈ M , and we can repeat this until all factors of 2 are removed from a number.

Let d be the greatest common divisor of all members from M . Then M ⊆ dZ>0 and d is odd.
Since d can be represented in the form

d = v1a1 + v2a2 + . . .+ vkak − vk+1ak+1 − vk+2ak+2 − . . .− vnan

for some ai ∈ M and vi ∈ Z>0, there exist two members of M with difference d.
Let c be the minimal element of M , c < a, and a, a+ d ∈ M . We choose the largest x ∈ M such

that x < a. Then the only elements of M in the interval [x, a+ d] are x, a, and a+ d, since M ⊆ dZ.
Meanwhile, x < x+a

2
< a, so x+ a must be odd, hence x+ a+ d is even, and then x < x+a+d

2
< a+ d

means x = a− d. Thus, the following implication holds:

(a, a+ d ∈ M and c < a) =⇒ a− d ∈ M.

Similarly, by setting x ∈ M to be the smallest such that x > a (we know that such an element
exists, since 2a ∈ M), we obtain

a− d, a ∈ M =⇒ a+ d ∈ M.

We thus get that M is obtained as the set of elements of the arithmetic progression c + kd
(k ∈ Z≥0). Obviously, this set satisfies both of the properties (a) and (b). Hence, we have proved that
M satisfies these properties if and only if M = {nd | m ⩽ n ∈ N} for some m ∈ N and odd d.
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Problem 8. For an n× n real matrix A ∈ Mn(R), denote by AR its counter-clockwise 90◦ rotation.
For example, 1 2 3

4 5 6
7 8 9

R

=

3 6 9
2 5 8
1 4 7

 .

Prove that if A = AR then for any eigenvalue λ of A, we have Reλ = 0 or Imλ = 0.

(proposed by Jan Kuś, University of Warwick)

Solution. If λ = 0, the claim holds as 0 ∈ R. Assume λ ≠ 0 is an eigenvalue of A with a
corresponding eigenvector x ∈ Cn \ {0}.

We will first express the operation A 7→ AR algebraically. The element at position (i, j) in A ends
up at position (n+ 1− j, i) in AR. Thus, the rotation is defined by the relation (AR)i,j = Aj,n+1−i.

Let J be the matrix where Ji,j = δn+1−j
i . The operation of transposing A and then reversing the

rows gives the matrix JA⊤. The (i, j)-th element of this matrix is

(JA⊤)i,j =
n∑

k=1

Ji,k(A
⊤)k,j = (A⊤)n+1−i,j = Aj,n+1−i.

This matches the definition of AR, so we get the identity AR = JA⊤. Note that the matrix J is
symmetric (J = J⊤) and it is its own inverse (J2 = I).

The given condition A = AR thus means A = JA⊤. Left-multiplying by J yields

JA = J(JA⊤) = (J2)A⊤ = A⊤. (∗)

Now, consider the standard Hermitian inner product (u, v) = v∗u on Cn. We evaluate (Ax,Ax) in
two ways. First, using our choice of x as an eigenvector corresponding to λ:

(Ax,Ax) = (λx, λx) = |λ|2∥x∥2.

Second, using the adjoint property and (∗):

(Ax,Ax) = (A∗Ax, x) = (A⊤Ax, x) = (JA(λx), x) = λ(JAx, x) = λ2(Jx, x).

Together, these give us |λ|2∥x∥2 = λ2(Jx, x).
The term (Jx, x) is real, since (Jx, x)∗ = (J∗x, x) = (Jx, x) because J is real and symmetric.

Since λ ̸= 0 and x ̸= 0, the left side |λ|2∥x∥2 is a positive real number. This implies that λ2(x, Jx)
must also be a positive real number. And as (x, Jx) is real, so is λ2.

Thus, either λ is real (if λ2 > 0) or its real part is 0 (if λ2 < 0). This completes the proof.
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Problem 9. Let n be a positive integer. Consider the following random process which produces a
sequence of n distinct positive integers X1, X2, . . . , Xn.

First, X1 is chosen randomly with P(X1 = i) = 2−i for every positive integer i. For 1 ≤ j ≤ n− 1,
having chosen X1, . . . , Xj , arrange the remaining positive integers in increasing order as n1 < n2 < · · · ,
and choose Xj+1 randomly with P(Xj+1 = ni) = 2−i for every positive integer i.

Let Yn = max{X1, . . . , Xn}. Show that

E[Yn] =
n∑

i=1

2i

2i − 1

where E[Yn] is the expected value of Yn.

(proposed by Jan Kuś and Jun Yan, University of Warwick)

Solution 1. For each j ∈ [n] = {1, 2, . . . , n}, let Yj = max{X1, . . . , Xj}. We use induction on j to
show that

E[Yj] =

j∑
i=1

2i

2i − 1
for all j ∈ [n].

The base case j = 1 follows easily from definition.
For the inductive step, it suffices to show that E[Yj+1 − Yj] =

2j+1

2j+1−1
for every j ∈ [n− 1]. Note

that Yj+1 ̸= Yj if and only if Xj+1 > Yj = max{X1, . . . , Xj}, in which case Yj+1 = Xj+1. Thus,

E[Yj+1 − Yj] = P[Xj+1 > Yj] · E[Xj+1 − Yj | Xj+1 > Yj].

To compute P[Xj+1 > Yj ], note that for any fixed pairwise distinct positive integers a1, . . . , aj and
a > max{a1, . . . , aj},

P[(X1, . . . , Xj+1) = (a, a1, . . . , aj)] = P[(X1, . . . , Xj+1) = (a1, a, . . . , aj)]/2

= P[(X1, . . . , Xj+1) = (a1, a2, a, . . . , aj)]/4

= · · · = P[(X1, . . . , Xj+1) = (a1, . . . , aj, a)]/2
j.

Therefore, summing over all possible a1, . . . , aj and a > max{a1, . . . , aj}, we see that

P[Xj+1 > Yj] =
2j∑j
i=0 2

i
=

2j

2j+1 − 1
.

To finish, it is easy to see that

E[Xj+1 − Yj | Xj+1 > Yj] =
∞∑
t=1

t · P[Xj+1 = Yj + t | Xj+1 > Yj] =
∞∑
t=1

t

2t
= 2.

Solution 2. Since Yn takes values in Z>0,

E[Yn] =
∞∑
k=1

P[Yn ≥ k].

For each k ∈ [n], P[Yn ≥ k] = 1, while for each k > n,

P[Yn ≥ k] = 1− P[Yn < k] = 1− P[X1, . . . , Xn < k] = 1−
n∏

i=1

(
1− 1

2k−i

)
.
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Note that this formula also works for every k ∈ [n], as the i = k term in the product is 0. Thus, it
suffices to show that

n∑
i=1

2i

2i − 1
=

∞∑
k=1

(
1−

n∏
i=1

(
1− 1

2k−i

))
.

The case of n = 1 is easy to verify. Using induction on n, it suffices to show that for every n ≥ 2,

1

1− 1
2n

=
∞∑
k=1

(
n−1∏
i=1

(
1− 1

2k−i

)
−

n∏
i=1

(
1− 1

2k−i

))
=

∞∑
k=1

(
1

2k−n

n−1∏
i=1

(
1− 1

2k−i

))
.

Indeed, for every N > n, after multiplying by 1− 1
2n
, the sum on the right telescopes as(

1− 1

2n

) N∑
k=1

(
1

2k−n

n−1∏
i=1

(
1− 1

2k−i

))
=

N∑
k=1

((
1

2k−n
− 1

2k

) n−1∏
i=1

(
1− 1

2k−i

))
=

=
N∑
k=1

(
n∏

i=1

(
1− 1

2k+1−i

)
−

n∏
i=1

(
1− 1

2k−i

))
=

n∏
i=1

(
1− 1

2N+1−i

)
.

Taking N to infinity finishes the proof.

Solution 3 (sketch). It can be shown by induction or another method that for any sequence of
positive integers a1 < a2 < · · · < an,

P[{X1, . . . , Xn} = {a1, . . . , an}] = 2
−

n∑
i=1

ai
n∏

i=1

(2i − 1).

For any a1 < a2 < · · · < an, let d1 = a1 and di+1 = ai+1 − ai for i ∈ [n− 1], so

P[{X1, . . . , Xn} = {d1, d1 + d2, . . . , d1 + · · ·+ dn}] = 2
−

n∑
i=1

(n+1−i)di
n∏

i=1

(2i − 1).

Note that (a1, . . . , an) 7→ (d1, . . . , dn) is a bijection between strictly increasing sequences in Z>0 of
length n and (Z>0)

n, so, using
∑
i≥1

xi = x/(1− x) and
∑
i≥1

ixi = x/(1− x)2, we get

E[Yn] =
n∏

i=1

(2i − 1)
∑

d1,...,dn≥1

(
n∑

i=1

di

)
2
−

n∑
j=1

(n+1−j)dj

=
n∏

i=1

(2i − 1)
n∑

i=1

(∑
di≥1

di2
−(n+1−i)di

)∏
j ̸=i

∑
dj≥1

2−(n+1−j)dj

 = · · · =
n∑

i=1

2i

2i − 1
.
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Problem 10. For any positive integer N , let SN be the number of pairs of integers 1 ≤ a, b ≤ N
such that the number (a2 + a)(b2 + b) is a perfect square. Prove that the limit

lim
N→∞

SN

N

exists and find its value.

(proposed by Besfort Shala, University of Bristol)

Solution. Throughout the solution, we use the Vinogradov notation A ≪ B to mean A = O(B),
which in turn means that there exists a constant C > 0, independent of the quantities A and B, such
that |A| ≤ C|B|, on the entirety of the domain where A and B are defined (for us, this will always be
the interval [1,∞).)

We will show that the limit equals 1, corresponding to the trivial solutions a = b. Note that
(a2 + a)(b2 + b) is a perfect square if and only if a2 + a = dz21 and b2 + b = dz22 for some square-free
d and z1, z2 ∈ Z>0. From this point on, all sums over d will be over square-free positive integers.
Multiplying the equations by 4 and setting yi = 2zi, we get

SN =
∑
d≪N2

cd(N)2 +O(1),

where cd(N) is the number of solutions to (2k + 1)2 − dy2 = 1 with 1 ≤ k ≤ N and 1 ≤ y ≤ N/2
with y even. Other than for the purpose of identifying the trivial solutions, we will work with Pell’s
equation x2 − dy2 = 1 with 1 ≤ x, y ≪ N . Split the sum as∑

d≪N2

cd(N)≤1

cd(N) +
∑
d≪N2

cd(N)>1

cd(N)2.

Note that if d ≫ N , then the size of the second solution x2 = x2
1 + dy21 (coming from x2 + y2

√
d =

(x1 + y1
√
d)2, where x1 + y1

√
d is the fundamental solution) is ≫ d ≫ N . Hence we may assume that

d ≪ N if cd(N) > 1 (with a suitable choice of hidden constants). Denote the second sum by E (for
error, which we will bound momentarily). The first sum is easily manipulated into being asymptotic
to N (up to the error E), using the fact that fixing x = 2a+ 1 ≤ 2N + 1 fixes the square-free d and
the square y2, namely

∑
d≪N2

cd(N)≤1

cd(N) =
∑
d≪N2

∑
1≤a≤N
1≤y≤N

2

χ(2a+1)2−dy2=1 +O (E) =
N∑
a=1

∑
d,y

χ(2a+1)2−1=dy2 +O (E) = N +O(E).

Here χ· denotes the characteristic function (taking the value 0 if · is not satisfied, and 1 otherwise).
Now we bound the error sum E. Note that solutions to Pell’s equation x2 − dy2 = 1 grow

exponentially, hence we have cd(N) ≪ logN . This means we may assume that N ≫ d ≫ N1−δ for
some small enough fixed δ > 0, since the contribution of d ≪ N1−δ is bounded by N1−δ logN . By
x2 − dy2 = 1, we have that d ≫ N1−δ implies y ≪ N1/2+δ.

Fixing each y ≪ N δ/2 gives ≪ N1−δ choices for x (hence also for d). So we may assume
N1/2+δ ≫ y ≫ N δ/2, since the contribution of y ≪ N δ/2 is bounded by N1−δ/2.

By placing x in residue classes modulo y2 and splitting the interval [1, 2N + 1] into intervals of
length y2, we get that each choice of N δ/2 ≪ y ≪ N1/2+δ gives ≪ Ng(y)/y2 choices for x (hence
also for d) by y2 | x2 + 1, where g(y) = |{1 ≤ x ≤ y2 : x2 + 1 ≡ 0 (mod y2)}|. By elementary
number theory, g is multiplicative and g(pk) ≤ 2 for all prime powers pk. In particular we obtain
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g(n) ≤ τ(n) ≪ nε for any ε > 0 (this is not hard to prove directly for g, but may be used as a
well-known fact for the divisor function τ). Therefore the contribution of such y is

≪
∑

Nδ/2≪y≪N1/2+δ

Ng(y)

y2
≪ N1−δ/2+ε,

which is acceptable by choosing ε > 0 small enough. We conclude that SN = N(1 + o(1)), as desired.

Remark. There is a secondary infinite family of solutions of “size”
√
N , namely given by a = 4b(b+1). This

shows that

lim sup
N→∞

SN −N√
N

> 0.
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