IMC 2025

First Day, July 30, 2025

Solutions

Problem 1. Let P € R[z| be a polynomial with real coefficients, and suppose deg(P) > 2. For every
r € R, let £, C R? denote the line tangent to the graph of P at the point (x, P(x)).

(a) Suppose that the degree of P is odd. Show that U (, = R2%

z€R
(b) Does there exist a polynomial of even degree for which the above equality still holds?

(proposed by Mike Daas, Max Planck Institute for Mathematics, Bonn)

Solution.
(a) Suppose that the degree of P is odd and let (a,b) € R be arbitrary. Given r € R, the equation
for ¢, is given by
b, ={(z,y) € R?* |y = P'(r)(z —r) + P(r)}.

For this line to pass through the point (a, b) it is therefore necessary and sufficient that
b=aP'(r)+ P(r) —rP'(r).

This is a polynomial equation in r, which always has a real solution as soon as we can show that the
degree is odd. Indeed, if P(r) = ¢r™ + ... describes the leading term, then the right hand side of the
above equation has leading term (¢ — nc)r™. Since ¢ # 0 and we assumed that n > 2, we must have
¢ —nc # 0. The right hand side therefore has the same degree as P, completing the proof.

(b) If the degree of P is even, then this can never be true, because the degree of aP’(r)+P(r)—rP'(r)
is now even by the same argument and therefore it has a global minimum (or maximum) over the
reals, below (or above) which no value of b will yield a real solution for 7.



Problem 2. Let f: R — R be a twice continuously differentiable function, and suppose that
[Y f(@)dz = 0and f(1) = f(—1) = 1. Prove that

/_1 (f"(x))® dz > 15,

1
and find all such functions for which equality holds.
(proposed by Alberto Cagnetta, Universita degli Studi di Udine, Italy)

Solution. If g is an arbitrary twice continously differentable function on [—1, 1], then by applying
the Caucy—Schwarz inequality for f” and g and integrate by parts twice we get

\// (f7)2- g2 >/ 9= (f'(Dg(1) = f'(-1)g(-1)) — _11 o =

= (f(Wg(1) = f(=Dg(=1)) = (f(V)g'(1) = fF(=1)g'(=1)) + | fd"

1

— (P9 F=Dg(-) — g W +g(-D) + [ 1" )

-1
In order to get rid of the terms f'(1)g(1) and f'(—1)g(—1) we will chose g such that g(l) g(—1) =0.
Moreover, if ¢” is constant, so ¢ is an at most quadratic polynomial, then ff1 fg" =g"[_, = fo.

Hence, it is reasonable to apply (1) with g(z) = (1 +z)(1 —2z) =1 — 2°.
With this choice,

and

1 1 16
/92—/(1—2m +at)ydr = —,
» o 15

[ z0-0-g+g-n+o=1

/ 11<f”>2 > 15,

Equality in Cauchy—Schwarz in (1) holds only if there exists a real A such that f”(z) = Ag(x)
almost everywhere in [—1, 1]; by continuity of f” and g we have f” = Ag everwhere on the interval
[—1,1]. Hence f(z) must have the form

so we get

¢ 7t
flz)=A (— — —) +ax+b, with \,;a,b € R.
2 12
From fjl f(z)dz =0, we get 0 = 32+ 2b, hence b = — 2. Moreover, the condition f(1) = f(—1) =1

implies

1 1 3 1 1 3

hence a = 0, and \ = %.

In conclusion, the equality holds if and only if

15 [/x* z* 3 —5x* + 3022 -9
o) =2 ( )=

1 for all z € [-1,1].




Problem 3. Denote by S the set of all real symmetric 2025 x 2025 matrices of rank 1 whose entries
take values —1 or +1. Let A, B € § be matrices chosen independently uniformly at random. Find
the probability that A and B commute, i.e. AB = BA.

(proposed by Marian Pantiruc, ”Gheorghe Asachi” Technical University of Iagi, Romania)

Solution. Let n = 2025. First, we give a charaterisation of matrices in S.
Suppose that A = (a;;)7,—, € S. Since tk A = 1, for every 1 <4, j < n, we have

a11  Ayy
det ( = 011045 — G;1Q15 = A11045 — A31Q451 = 0.

Qi1 Qg
a1 1
. . a21 21
If a;; = 1 then this means a;; = a;a;. In this case, let u = = ; then we have
Qan1 Qan1
—an
- . —az1
A= (aﬂaﬂ) = uu . Otherwise, if a;; = —1, we have a;; = —a;1a;1. In that case, let u = ) =
—Qn1
1
—a21
: then A = —(aﬂajl) = —uu'.
—0an1
1
. . . T . U2
Hence, all matrices in S can uniquely be written as tuu' with a vector u = | . | such that
Unp,
Ug, ..., u, € {£1}. (Note that rk(uu') = 1 is satisfied.) In particular, we have |S| = 2", because the
sign and the coordinates us, ..., u, can be chosen independently.
Now, if A = f+uu’ and B = +vv” are elements of S, then
AB = f(uu")(vv") = fu(u v’ = fu- (u,v) -0’ = E{u,v) - (uiUJ)Zj:1

and similarly
BA = +(u,v) - (Uiuj)i,j:r
Since n = 2025 is odd, it follows that (u,v) # 0. The first columns of the matrices uv’ = (uivj)?jzl

and vu' = (Uiuj)?jzl are u and v, respectively. Hence, AB = BA if and only if u = v; in other words,

it A=4B.

For each A € §, there are precisely two suitable matrices B € S, so the probability that A, B
1

2
commute 18 — =

‘S’ 2n71'



Problem 4. Let a be an even positive integer. Find all real numbers x such that
{\“/ba . ba-lJ ="+ |z/a) (1)

holds for every positive integer b.
(Here |z] denotes the largest integer that is no greater than z.)

(proposed by Yagub Aliyev, ADA University, Baku, Azerbaijan)

Solution. We will show that if a = 2 then we must have z € [—1, 2) U3, 4), otherwise x € [—1, a).
Suppose that |z/a] =m. Then m < x/a <m + 1, and

am <z < a(lm+1). (2)
Let b =1. Then
L\“/l +xJ =1+ |z/a]. (3)

From (3) it follows that |1+ 2| =14+m,or 1+ m < /142 <2+m, or
(I+m)*—1<zx<(2+m)*—1, (4)

where we have used the obvious fact that m > —1. Indeed, the number /1 4+ x and therefore the
number H/ 1+ xJ = 1+ m is not negative. By Bernoulli’s inequality, the following two inequalities —
which compare the inequalities (2) and (4) — hold:

am
a(m+1)

(1+m)*—1, (5)
(14 (m+1)*—1, (6)

IA A

where in (5), equality holds if and only if m = 0, and in (6), equality holds if and only if m = —1.
From (2), (4)-(6), it follows that

(m+1)*—1<z<a(lm+1). (7)
From (7), it follows that (m 4 1)* — 1 < a(m + 1). Therefore
(m+1)* < a(m+1). (8)

From (8), it follows that m + 1 < aw7. Ifa>2then m+1 < a7 < 2, because 2~ > q for a > 2

(one can prove this by mathematical induction) and 1 < a1 < 2 is not an integer. Therefore, if
a>2thenm=0orm=—1. If a=2then m=—1, m=0or m=1. From (7), it follows that the
equality (3) holds true only for the values -1 <z < 0 (m=-1),0<z<a (m=0)if a > 2, and
—1<z<0(m=-1),0<z<2(m=0)and3<z<4(m=1)ifa=2.

We will now prove that for these values of z, the equality (1) is true for all positive integers b.
From (7), it follows that b* + (m + 1)* — 1 < b* 4+ < b* +a(m + 1) and

(m+1)*—1 a(m+1)

1+ <1+— <1+ 9)
be - be e
By Bernoulli’s inequality
1 1\“
pypamt) f mA Iy (10)
be be
where equality occurs if and only if m = —1. It is easy to check that for m =1 (if a = 2), m = 0 and
m = —1, the following inequality holds true:
a nH*—1
(1+g> §1+%. (11)

4



From (9)—(11), it follows that

mye T m—+1\"
1+ 2) <142 < (1 .
(1) =s1+3; (+ b )
From (12), it follows that

Vtrm< Vb + -0 < b+ mA1,
b+ |w/al < Vb +x -0t < b+ [x/a] + 1.

Consequently, equality (1) holds.

(12)



Problem 5. For a positive integer n, let [n] = {1,2,...,n}. Denote by S, the set of all bijections
from [n] to [n], and let T, be the set of all maps from [n] to [n]. Define the order ord(r) of a map
7 € T, as the number of distinct maps in the set {7,707, 70707, ...} where o denotes composition.
Finally, let

f(n) = max ord(r) and ¢(n)= max ord(r).

TETn

Prove that g(n) < f(n) +n%% for sufficiently large n.
(proposed by Fedor Petrov, St Petersburg State University)

Solution. For every 7 € T, we need to prove that ord(r) < f(n) + n%% (if n is large enough).
Denote by C(7) the set of elements x € [n] for which 7%(z) = 7(...7(x)...) = x for some k > 0. It is
k

immediate that C(7) is a 7-invariant set; let 7. = 7|¢(;), that is a permutation on C(7).

Let N be the order of this permutation 7., clearly N < g(n). Consider an arbitrary element
x € [n]\ C(7). The sequence x,7(x),7%(x),... is eventually periodic, but not from the beginning,
because x ¢ C(7).

Let h(x) > 0 be the minimal number for which 7%®)(z) is in the period; equivalently, this is the

minimal number for which 7% (z) € C(7). Let R = ﬁ%{( )h(m). Note that 7%(x) = 77N (z) for
TEN T

all z € [n], since 7%(z) € C(7) for all # € [n]. Therefore, ord(7) < N + R. Thus, if R < n®%! we
are done.

Now assume that R > n%% that is, h(z) > n%°% for some x ¢ C(7). Tt yields |C(7)| < n—n%h,
Consider the cycle lengths of the permutation 7.. We claim that there exists a prime number p < n%%°!
which does not divide any of these lengths. Indeed, otherwise the sum of cycle lengths of 7, is not
less than the sum of all prime numbers not exceeding n%5! (because each positive integer is not less
than the sum of its prime divisors, that in turn follows from ab > a + b for a,b > 2). But for large
n, the number of prime numbers less than n%%°! is at least n%%%% by some weak version of Prime
Number Theorem (that also has many short proofs). Therefore, their sum exceeds n, contradiction.

Now we may consider the permutation 75 € S, which acts as 7, on C(7) and has a cycle of length
pon [n]\ C(7). The order of 7y is not less than p - NV, therefore N < f(n)/p < f(n)/2, and by the
above argument we get ord(7) < N + R < f(n)/2 +n < f(n) for large n.



