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Solutions

Problem 1. Let P ∈ R[x] be a polynomial with real coefficients, and suppose deg(P ) ≥ 2. For every
x ∈ R, let ℓx ⊂ R2 denote the line tangent to the graph of P at the point (x, P (x)).

(a) Suppose that the degree of P is odd. Show that
⋃
x∈R

ℓx = R2.

(b) Does there exist a polynomial of even degree for which the above equality still holds?

(proposed by Mike Daas, Max Planck Institute for Mathematics, Bonn)

Solution.
(a) Suppose that the degree of P is odd and let (a, b) ∈ R be arbitrary. Given r ∈ R, the equation

for ℓr is given by
ℓr =

{
(x, y) ∈ R2 | y = P ′(r)(x− r) + P (r)

}
.

For this line to pass through the point (a, b) it is therefore necessary and sufficient that

b = aP ′(r) + P (r)− rP ′(r).

This is a polynomial equation in r, which always has a real solution as soon as we can show that the
degree is odd. Indeed, if P (r) = crn + . . . describes the leading term, then the right hand side of the
above equation has leading term (c− nc)rn. Since c ≠ 0 and we assumed that n ≥ 2, we must have
c− nc ̸= 0. The right hand side therefore has the same degree as P , completing the proof.

(b) If the degree of P is even, then this can never be true, because the degree of aP ′(r)+P (r)−rP ′(r)
is now even by the same argument and therefore it has a global minimum (or maximum) over the
reals, below (or above) which no value of b will yield a real solution for r.
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Problem 2. Let f : R → R be a twice continuously differentiable function, and suppose that∫ 1

−1
f(x) dx = 0 and f(1) = f(−1) = 1. Prove that∫ 1

−1

(f ′′(x))
2
dx ≥ 15,

and find all such functions for which equality holds.

(proposed by Alberto Cagnetta, Università degli Studi di Udine, Italy)

Solution. If g is an arbitrary twice continously differentable function on [−1, 1], then by applying
the Caucy–Schwarz inequality for f ′′ and g and integrate by parts twice we get√∫ 1

−1

(f ′′)2 ·
∫ 1

−1

g2 ≥
∫ 1

−1

f ′′g =
(
f ′(1)g(1)− f ′(−1)g(−1)

)
−
∫ 1

−1

f ′g′ =

=
(
f ′(1)g(1)− f ′(−1)g(−1)

)
−
(
f(1)g′(1)− f(−1)g′(−1)

)
+

∫ 1

−1

fg′′

=
(
f ′(1)g(1)− f ′(−1)g(−1)− g′(1) + g′(−1)

)
+

∫ 1

−1

fg′′. (1)

In order to get rid of the terms f ′(1)g(1) and f ′(−1)g(−1) we will chose g such that g(1) = g(−1) = 0.

Moreover, if g′′ is constant, so g is an at most quadratic polynomial, then
∫ 1

−1
fg′′ = g′′

∫ 1

−1
= f0.

Hence, it is reasonable to apply (1) with g(x) = (1 + x)(1− x) = 1− x2.
With this choice,

g(1) = g(−1) = 0, g′(1) = −2, g′(−1) = 2, g′′ ≡ −2

and ∫ 1

−1

g2 =

∫ 1

−1

(1− 2x2 + x4) dx =
16

15
,

so we get √∫ 1

−1

(f ′′)2 · 16
15

≥ 0− 0− g′(1) + g′(−1) + 0 = 4,∫ 1

−1

(f ′′)2 ≥ 15.

Equality in Cauchy–Schwarz in (1) holds only if there exists a real λ such that f ′′(x) = λg(x)
almost everywhere in [−1, 1]; by continuity of f ′′ and g we have f ′′ = λg everwhere on the interval
[−1, 1]. Hence f(x) must have the form

f(x) = λ

(
x2

2
− x4

12

)
+ ax+ b, with λ, a, b ∈ R.

From
∫ 1

−1
f(x)dx = 0, we get 0 = 3λ

10
+2b, hence b = − 3

20
λ. Moreover, the condition f(1) = f(−1) = 1

implies

λ

(
1

2
− 1

12

)
+ a− 3

20
λ = f(1) = 1 = f(−1) = λ

(
1

2
− 1

12

)
− a− 3

20
λ

hence a = 0, and λ = 15
4
.

In conclusion, the equality holds if and only if

f(x) =
15

4
·
(
x2

2
− x4

12
− 3

20

)
=

−5x4 + 30x2 − 9

16
for all x ∈ [−1, 1].
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Problem 3. Denote by S the set of all real symmetric 2025× 2025 matrices of rank 1 whose entries
take values −1 or +1. Let A,B ∈ S be matrices chosen independently uniformly at random. Find
the probability that A and B commute, i.e. AB = BA.

(proposed by Marian Panţiruc, ”Gheorghe Asachi” Technical University of Iaşi, Romania)

Solution. Let n = 2025. First, we give a charaterisation of matrices in S.
Suppose that A = (aij)

n
i,j=1 ∈ S. Since rkA = 1, for every 1 < i, j ≤ n, we have

det

(
a11 a1j
ai1 aij

)
= a11aij − ai1a1j = a11aij − ai1aj1 = 0.

If a11 = 1 then this means aij = ai1aj1. In this case, let u =


a11
a21
...

an1

 =


1
a21
...

an1

; then we have

A =
(
ai1aj1

)
= uu⊤. Otherwise, if a11 = −1, we have aij = −ai1aj1. In that case, let u =


−a11
−a21
...

−an1

 =


1

−a21
...

−an1

; then A = −
(
ai1aj1

)
= −uu⊤.

Hence, all matrices in S can uniquely be written as ±uu⊤ with a vector u =


1
u2
...
un

 such that

u2, . . . , un ∈ {±1}. (Note that rk(uu⊤) = 1 is satisfied.) In particular, we have |S| = 2n, because the
sign and the coordinates u2, . . . , un can be chosen independently.

Now, if A = ±uuT and B = ±vvT are elements of S, then

AB = ±(uu⊤)(vv⊤) = ±u(u⊤v)v⊤ = ±u · ⟨u, v⟩ · v⊤ = ±⟨u, v⟩ ·
(
uivj

)n
i,j=1

and similarly
BA = ±⟨u, v⟩ ·

(
viuj

)n
i,j=1

.

Since n = 2025 is odd, it follows that ⟨u, v⟩ ̸= 0. The first columns of the matrices uv⊤ =
(
uivj

)n
i,j=1

and vu⊤ =
(
viuj

)n
i,j=1

are u and v, respectively. Hence, AB = BA if and only if u = v; in other words,

if A = ±B.

For each A ∈ S, there are precisely two suitable matrices B ∈ S, so the probability that A,B

commute is
2

|S|
=

1

2n−1
.
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Problem 4. Let a be an even positive integer. Find all real numbers x such that⌊
a
√
ba + x · ba−1

⌋
= ba + ⌊x/a⌋ (1)

holds for every positive integer b.
(Here ⌊x⌋ denotes the largest integer that is no greater than x.)

(proposed by Yagub Aliyev, ADA University, Baku, Azerbaijan)

Solution. We will show that if a = 2 then we must have x ∈ [−1, 2)∪ [3, 4), otherwise x ∈ [−1, a).
Suppose that ⌊x/a⌋ = m. Then m ≤ x/a < m+ 1, and

am ≤ x < a(m+ 1). (2)

Let b = 1. Then ⌊
a
√
1 + x

⌋
= 1 + ⌊x/a⌋ . (3)

From (3) it follows that
⌊

a
√
1 + x

⌋
= 1 +m, or 1 +m ≤ a

√
1 + x < 2 +m, or

(1 +m)a − 1 ≤ x < (2 +m)a − 1, (4)

where we have used the obvious fact that m ≥ −1. Indeed, the number a
√
1 + x and therefore the

number
⌊

a
√
1 + x

⌋
= 1+m is not negative. By Bernoulli’s inequality, the following two inequalities —

which compare the inequalities (2) and (4) — hold:

am ≤ (1 +m)a − 1, (5)

a(m+ 1) ≤ (1 + (m+ 1))a − 1, (6)

where in (5), equality holds if and only if m = 0, and in (6), equality holds if and only if m = −1.
From (2), (4)–(6), it follows that

(m+ 1)a − 1 ≤ x < a(m+ 1). (7)

From (7), it follows that (m+ 1)a − 1 < a(m+ 1). Therefore

(m+ 1)a ≤ a(m+ 1). (8)

From (8), it follows that m+ 1 ≤ a
1

a−1 . If a > 2 then m+ 1 < a
1

a−1 < 2, because 2a−1 > a for a > 2

(one can prove this by mathematical induction) and 1 < a
1

a−1 < 2 is not an integer. Therefore, if
a > 2 then m = 0 or m = −1. If a = 2 then m = −1, m = 0 or m = 1. From (7), it follows that the
equality (3) holds true only for the values −1 ≤ x < 0 (m = −1), 0 ≤ x < a (m = 0) if a > 2, and
−1 ≤ x < 0 (m = −1), 0 ≤ x < 2 (m = 0) and 3 ≤ x < 4 (m = 1) if a = 2.

We will now prove that for these values of x, the equality (1) is true for all positive integers b.
From (7), it follows that ba + (m+ 1)a − 1 ≤ ba + x < ba + a(m+ 1) and

1 +
(m+ 1)a − 1

ba
≤ 1 +

x

ba
< 1 +

a(m+ 1)

ba
. (9)

By Bernoulli’s inequality

1 +
a(m+ 1)

ba
≤

(
1 +

m+ 1

ba

)a

, (10)

where equality occurs if and only if m = −1. It is easy to check that for m = 1 (if a = 2), m = 0 and
m = −1, the following inequality holds true:(

1 +
m

ba

)a

≤ 1 +
(m+ 1)a − 1

ba
. (11)
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From (9)–(11), it follows that (
1 +

m

ba

)a

≤ 1 +
x

ba
<

(
1 +

m+ 1

ba

)a

. (12)

From (12), it follows that

ba +m ≤ a
√
ba + x · ba−1 < ba +m+ 1,

ba + ⌊x/a⌋ ≤ a
√
ba + x · ba−1 < ba + ⌊x/a⌋+ 1.

Consequently, equality (1) holds.
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Problem 5. For a positive integer n, let [n] = {1, 2, . . . , n}. Denote by Sn the set of all bijections
from [n] to [n], and let Tn be the set of all maps from [n] to [n]. Define the order ord(τ) of a map
τ ∈ Tn as the number of distinct maps in the set {τ, τ ◦ τ, τ ◦ τ ◦ τ, . . .} where ◦ denotes composition.
Finally, let

f(n) = max
τ∈Sn

ord(τ) and g(n) = max
τ∈Tn

ord(τ).

Prove that g(n) < f(n) + n0.501 for sufficiently large n.

(proposed by Fedor Petrov, St Petersburg State University)

Solution. For every τ ∈ Tn we need to prove that ord(τ) ⩽ f(n) + n0.501 (if n is large enough).
Denote by C(τ) the set of elements x ∈ [n] for which τ k(x) = τ(. . . τ︸ ︷︷ ︸

k

(x) . . .) = x for some k > 0. It is

immediate that C(τ) is a τ -invariant set; let τc = τ |C(τ), that is a permutation on C(τ).
Let N be the order of this permutation τc, clearly N ⩽ g(n). Consider an arbitrary element

x ∈ [n] \ C(τ). The sequence x, τ(x), τ 2(x), . . . is eventually periodic, but not from the beginning,
because x /∈ C(τ).

Let h(x) > 0 be the minimal number for which τh(x)(x) is in the period; equivalently, this is the
minimal number for which τh(x)(x) ∈ C(τ). Let R = max

x∈[n]\C(τ)
h(x). Note that τR(x) = τR+N(x) for

all x ∈ [n], since τR(x) ∈ C(τ) for all x ∈ [n]. Therefore, ord(τ) ⩽ N + R. Thus, if R < n0.501, we
are done.

Now assume that R ⩾ n0.501, that is, h(x) ⩾ n0.501 for some x /∈ C(τ). It yields |C(τ)| ⩽ n−n0.501.
Consider the cycle lengths of the permutation τc. We claim that there exists a prime number p < n0.501

which does not divide any of these lengths. Indeed, otherwise the sum of cycle lengths of τc is not
less than the sum of all prime numbers not exceeding n0.501 (because each positive integer is not less
than the sum of its prime divisors, that in turn follows from ab ⩾ a+ b for a, b ⩾ 2). But for large
n, the number of prime numbers less than n0.501 is at least n0.5009 by some weak version of Prime
Number Theorem (that also has many short proofs). Therefore, their sum exceeds n, contradiction.

Now we may consider the permutation τ0 ∈ Sn which acts as τc on C(τ) and has a cycle of length
p on [n] \ C(τ). The order of τ0 is not less than p ·N , therefore N ⩽ f(n)/p ⩽ f(n)/2, and by the
above argument we get ord(τ) ⩽ N +R ⩽ f(n)/2 + n < f(n) for large n.
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