IMC 2025

First Day, July 30, 2025

Problem 1. Let $P \in \mathbb{R}[x]$ be a polynomial with real coefficients, and suppose $\deg(P) \geq 2$. For every $x \in \mathbb{R}$, let $\ell_x \subset \mathbb{R}^2$ denote the line tangent to the graph of P at the point (x, P(x)).

- (a) Suppose that the degree of P is odd. Show that $\bigcup_{x\in\mathbb{P}} \ell_x = \mathbb{R}^2$.
- (b) Does there exist a polynomial of even degree for which the above equality still holds?

(10 points)

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function, and suppose that $\int_{-1}^{1} f(x) dx = 0$ and f(1) = f(-1) = 1. Prove that

$$\int_{-1}^{1} \left(f''(x) \right)^2 \, \mathrm{d}x \ge 15,$$

and find all such functions for which equality holds.

(10 points)

Problem 3. Denote by S the set of all real symmetric 2025×2025 matrices of rank 1 whose entries take values -1 or +1. Let $A, B \in S$ be matrices chosen independently uniformly at random. Find the probability that A and B commute, i.e. AB = BA.

(10 points)

Problem 4. Let a be an even positive integer. Find all real numbers x such that

$$\left| \sqrt[a]{b^a + x} \cdot b^{a-1} \right| = b^a + \lfloor x/a \rfloor \tag{1}$$

holds for every positive integer b.

(Here |x| denotes the largest integer that is no greater than x.)

(10 points)

Problem 5. For a positive integer n, let $[n] = \{1, 2, ..., n\}$. Denote by S_n the set of all bijections from [n] to [n], and let T_n be the set of all maps from [n] to [n]. Define the order ord (τ) of a map $\tau \in T_n$ as the number of distinct maps in the set $\{\tau, \tau \circ \tau, \tau \circ \tau \circ \tau, ...\}$ where \circ denotes composition. Finally, let

$$f(n) = \max_{\tau \in S_n} \operatorname{ord}(\tau)$$
 and $g(n) = \max_{\tau \in T_n} \operatorname{ord}(\tau)$.

Prove that $g(n) < f(n) + n^{0.501}$ for sufficiently large n.

(10 points)