IMC 2016, Blagoevgrad, Bulgaria

Day 1, July 27, 2016

Problem 1. Let f: [a,b] — R be continuous on [a,b] and differentiable on (a,b). Suppose that f
has infinitely many zeros, but there is no x € (a,b) with f(z) = f'(z) =

(a) Prove that f(a)f(b) = 0.

(b) Give an example of such a function on [0, 1].
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution. (a) Choose a convergent sequence z,, of zeros and let ¢ = lim z,, € [a, b]. By the continuity
of f we obtain f(c) = 0. We want to show that either ¢ = a or ¢ = b, so f(a) = 0 or f(b) = 0; then
the statement follows.

flen) = fle) . 0-0

If ¢ was an interior point then we would have f(¢) = 0 and f/(¢) = lim = lim =
2y —C Zn —C
0 simultaneously, contradicting the conditions. Hence, ¢ = a or ¢ = b.
(b) Let
1
rsin— if0<zx<l1
fz) = x
0 if x =0.
1
This function has zeros at the points o= for k =1,2,..., and it is continuous at 0 as well.
™
In (0,1) we have
1 1 1
f'(z) =sin — — — cos —.
r x

Since sin L and cos < cannot vanish at the same point, we have either f(x) # 0 or f/(z) # 0 everywhere

n (0,1).

Problem 2. Let k and n be positive integers. A sequence (Aj, ..., Ax) of n X n real matrices is
preferred by Ivan the Confessor if A? # 0 for 1 < i < k, but 4;4; =0 for 1 <i,j < k with ¢ # j.
Show that & < n in all preferred sequences, and give an example of a preferred sequence with k =n
for each n.

(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. For every i = 1,...,n, since A; - A; # 0, there is a column v; € R™ in A; such that
A;v; # 0. We will show that the vectors vy, ..., v, are linearly independent; this immediately proves
k <n.

Suppose that a linear combination of vy, ..., v, vanishes:

v+ ...+ =0, cp,...,cx €R.

For ¢ # j we have A;A; = 0; in particular, A;u; = 0. Now, for each i = 1,...,n, from

M;r

0=Ai(civr + ...+ cpvg) = ci(Avy) = ¢i(A;)

Jj=1

we can see that ¢; = 0. Hence, ¢, = ... = ¢, = 0.
The case k = n is possible: if A; has a single 1 in the main diagonal at the ith position and its
other entries are zero then A7 = A; and 4;A; = 0 for i # j.



Remark. The solution above can be re-formulated using block matrices in the following way. Consider

Ay A0 ... 0
A 0 A2 ... 0
(A1 Ay ... Ay) :2 =
Ay, 0 0 ... A2

It is easy to see that the rank of the left-hand side is at most n; the rank of the right-hand side is at least k.

Solution 2. Let U; and K; be the image and the kernel of the matrix A; (considered as a linear
operator on R™), respectively. For every pair 4, j of indices, we have U; C K if and only if i # j.

Let Xo=R"and let X; = KiNKyN---NK;fori=1,...,k,s0 Xog D X; D... D X Notice also
that U; C X;_1 because U; C K for every j < i, and U; ¢ X; because U; ¢ K;. Hence, X; # X;_1;
X, is a proper subspace of X;_;.

Now, from
n=dimXy>dimX; >...>dimX; >0
we get k > n.
Problem 3. Let n be a positive integer. Also let aq,as,...,a, and by,bs,...,b, be real numbers

such that a; + b; > 0 for i = 1,2,...,n. Prove that
n n n 2
n i) bi — b;
a;b; — b? z; ¢ 1:21 (zzl )
> (ai +b)
i=1

i1 a; + bZ

(Proposed by Daniel Strzelecki, Nicolaus Copernicus University in TorAzn, Poland)

Solution. By applying the identity

XYy -v? 2y2
X+Y X+Y

(2

with X = a; and Y = b; to the terms in the LHS and X = > a; and Y =
=1

(2

b; to the RHS,
=1

= =1

Zai'zbi_ (sz) n <sz)
RHS: =1 =1 =1 :Zb_z =1 )

(ai + b;)

i=1 i=1 i=1
Therefore, the statement is equivalent with

B2 <§3b"'>2
v >

=1

Y

i=1 a/i +b’L - Z(U/Z +bl>
=1

which is the same as the well-known variant of the Cauchy-Schwarz inequality,

in - (X1 + ...+ X,)?

Vi Y,
Y. 2 v gy, M ¥a>0)

=1



Problem 4. Let n > k be positive integers, and let F be a family of finite sets with the following
properties:

i) F contains at least (') + 1 distinct sets containing exactly k elements;
k
ii) for any two sets A, B € F, their union A U B also belongs to F.
y g

Prove that F contains at least three sets with at least n elements.
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. If n = k then we have at least two distinct sets in the family with exactly n elements
and their union, so the statement is true. From now on we assume that n > k.

Fix (Z) + 1 sets of size k in F, call them 'generators’. Let V € F be the union of the generators.
Since V has at least (}) + 1 subsets of size k, we have |V| > n.

Call an element v € V' ‘appropriate’ if v belongs to at most (Zj) generators. Then there exist

at least (Z) +1-— (Zj) = (";1) + 1 generators not containing v. Their union contains at least n
elements, and the union does not contain v.

Now we claim that among any n elements xy,...,z, of V. there exists an appropriate element.
Consider all pairs (G, z;) such that G is a generator and z; € G. Every generator has exactly k
elements, so the number of such pairs is at most ((Z) + 1) - k. If some x; is not appropriate then z;
is contained in at least (Zj) + 1 generators; if none of x4, ..., x, was appropriate then we wold have
at least n - ((Zj) + 1) pairs. But n- ((Zj) + 1) > ((Zj) + 1) - k, so this is not possible; at least one
of xy,...,x, must be appropriate.

Since |V| > n, the set V contains some appropriate element v;. Let U; € F be the union of all
generators not containing v. Then |U;| > n and v; ¢ U;. Now take an appropriate element vy from
Uy and let Uy € F be the union of all generators not containing ve. Then |Us| > n, so we have three
sets, V', Uy and U, in € F with at least n elements: V' # Uy because v; € V and vy € Uy, and Us is
different from V' and U; because vy € V,U; but vy & Us.

Solution 2. We proceed by induction on k, so we can assume that the statement of the problem is
known for smaller values of k. By contradiction, assume that F has less than 3 sets with at least n
elements, that is the number of such sets is 0, 1 or 2. We can assume without loss of generality that
F consists of exactly N := (Z) + 1 distinct sets of size k and all their possible unions. Denote the
sets of size k by S1,S5s,. ...

Consider a maximal set I C {1,..., N} such that A := (J,., S; has size less than n, |[A| < n. This
means that adding any S; for j ¢ I makes the size at least n, |S;UA| > n. First, let’s prove that such
7 exist. Otherwise, all the sets S; are contained in A. But there are only (lﬁ‘) < (";1) < N distinct
k-element subsets of A, this is a contradiction. So there is at least one j such that |S; U A| > n.
Consider all possible sets that can be obtained as S; U A for j ¢ I. Their size is at least n, so their
number can be 1 or 2. If there are two of them, say B and C' then B C C or C' C B, for otherwise
the union of B and C would be different from both B and C', so we would have three sets B, C' and
B U C of size at least n. We see that in any case there must exist x ¢ A such that = € 5; for all
j ¢ I. Consider sets S; = S; \ {x} for j ¢ I. Their sizes are equal to k& — 1. Their number is at least

()G

By the induction hypothesis, we can form 3 sets of size at least n — 1 by taking unions of the sets S’
for j ¢ I. Adding x back we see that the corresponding unions of the sets S; will have sizes at least
n, so we are done proving the induction step.

The above argument allows us to decrease k all the way to & = 0, so it remains to check the
statement for £ = 0. The assumption says that we have at least (g) + 1 = 2 sets of size 0. This is
impossible, because there is only one empty set. Thus the statement trivially holds for £ = 0.

Problem 5. Let S,, denote the set of permutations of the sequence (1,2,...,n). For every permu-
tation m = (my,...,m,) € Sy, let inv(7) be the number of pairs 1 <i < j < n with m; > 7;; i.e. the



number of inversions in m. Denote by f(n) the number of permutations 7 € S,, for which inv(w) is

divisible by n + 1.
—1)!
Prove that there exist infinitely many primes p such that f(p—1) > p -, and infinitely many

(p—l)!‘

primes p such that f(p — 1) <
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. We will use the well-known formula

Do a™m =1 (1ta) (Q+z+a®).  (Itz+-+a").
WESn

(This formula can be proved by induction on n. The cases n = 1,2 are obvious. From each permu-

tation of (1,2,...,n — 1), we can get a permutation of (1,2,...,n) such that we insert the element
n at one of the n possible positions before, between or after the numbers 1,2, ..., n — 1; the number
of inversions increases by n — 1,n —2,...,1 or 0, respectively.)
Now let
{L‘) _ Z xinv(w).
TESR

and let ¢ = en+1. The sum of coefficients of the powers divisible by n 4+ 1 may be expressed as a
trigonometric sum as

-1 n—1
1
G, ("
n—l—lkz:: 1+n+1; (e

Hence, we are interested in the sign of

n! -
_ = G, ("
) = = e
with n = p — 1 where p is a (large, odd) prime.
For every fixed 1 < k < p— 1 we have
p—1 p—1 ik k 2% ~1)k
- 1—¢&l (1—e®)(1—e?). . (1 — Dk
ky _ ko -2k G—Dky _ _
Gp_l(s)—H(l—i—e +e+. Fe¢ )—' o = et :
j=1 j=1
Notice that the factors in the numerator are (1 —¢), (1 —&?), ..., (1 —&P™!); only their order is

different. So, by the identity (z —g)(z —€?)...(z —eP™ ) =1+ 2+ -+ + 2771

p p
Gp—l(‘gk) = (1 _ gk;)p—l = (1 B 621;7@)17—1'

Hence, f(p—1) — @ has the same sign as

—1 -1 1—
2 CTETA L k- ok
(I—e» ) P=>» e » —2isin — =
p

p—1
2 1-p
=2.92! “P( p21 E cos (sin W—k)
p

For large primes p the term with £ = 1 increases exponentlally faster than all other terms, so this
term determines the sign of the whole sum. Notice that cos mp=1) converges to —1. So, the sum
is positive if p — 1 is odd and negative if p — 1 is even. Therefore, for sufficiently large primes,
flp—1)— @ is positive if p =3 (mod 4) and it is negative if p =1 (mod 4).




