IMC 2016, Blagoevgrad, Bulgaria

Day 1, July 27, 2016

Problem 1. Let $f: [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that f has infinitely many zeros, but there is no $x \in (a,b)$ with f(x) = f'(x) = 0.

- (a) Prove that f(a)f(b) = 0.
- (b) Give an example of such a function on [0, 1].

(10 points)

Problem 2. Let k and n be positive integers. A sequence (A_1, \ldots, A_k) of $n \times n$ real matrices is *preferred* by Ivan the Confessor if $A_i^2 \neq 0$ for $1 \leq i \leq k$, but $A_i A_j = 0$ for $1 \leq i, j \leq k$ with $i \neq j$. Show that $k \leq n$ in all preferred sequences, and give an example of a preferred sequence with k = n for each n.

(10 points)

Problem 3. Let n be a positive integer. Also let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers such that $a_i + b_i > 0$ for $i = 1, 2, \ldots, n$. Prove that

$$\sum_{i=1}^{n} \frac{a_i b_i - b_i^2}{a_i + b_i} \le \frac{\sum_{i=1}^{n} a_i \cdot \sum_{i=1}^{n} b_i - \left(\sum_{i=1}^{n} b_i\right)^2}{\sum_{i=1}^{n} (a_i + b_i)}.$$

(10 points)

Problem 4. Let $n \geq k$ be positive integers, and let \mathcal{F} be a family of finite sets with the following properties:

- (i) \mathcal{F} contains at least $\binom{n}{k} + 1$ distinct sets containing exactly k elements;
- (ii) for any two sets $A, B \in \mathcal{F}$, their union $A \cup B$ also belongs to \mathcal{F} .

Prove that \mathcal{F} contains at least three sets with at least n elements.

(10 points)

Problem 5. Let S_n denote the set of permutations of the sequence (1, 2, ..., n). For every permutation $\pi = (\pi_1, ..., \pi_n) \in S_n$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \le i < j \le n$ with $\pi_i > \pi_j$; i.e. the number of inversions in π . Denote by f(n) the number of permutations $\pi \in S_n$ for which $\operatorname{inv}(\pi)$ is divisible by n+1.

Prove that there exist infinitely many primes p such that $f(p-1) > \frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1) < \frac{(p-1)!}{p}$.

(10 points)