10" International Mathematical Competition for University Students
Cluj-Napoca, July 2003

Day 2

1. Let A and B be n x n real matrices such that AB + A+ B = 0. Prove that AB = BA.

Solution. Since (A+1)(B+1) = AB+ A+ B+1 =1 (I is the identity matrix), matrices
A+ 1 and B + I are inverses of each other. Then (A+I)(B+ 1) = (B+1)(A+I) and
AB + BA.

2. Evaluate the limit
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Solution. We use the fact that — decreasing in the interval (0, 7) and thg&() — = 1.
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For all z € (0,%) and t € [z, 2x] we have = 1, thus
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3. Let A be a closed subset of R” and let B be the set of all those points b € R™ for which
there exists exactly one point ag € A such that

—b| = inf |a — b|.
|ao —b] = inf |a —b|
Prove that B is dense in R"; that is, the closure of B is R".

Solution. Let by ¢ A (otherwise by € A C B), o = in£ |a—bg|. The intersection of the ball
ac

of radius ¢+ 1 with centre by with set A is compact and there exists ag € A: |ag — by| = o.
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Denote by B,(a) = {z € R": |r —a| <r} and IB,(a) = {x € R": |x —a| = r} the
ball and the sphere of center a and radius r, respectively.

If ag is not the unique nearest point then for any point a on the open line segment (ag, by)
we have Bj,_q,|(a) C B,(by) and 0Bjq_q|(a) () OB,(bo) = {ao}, therefore (ag,by) C B and
by is an accumulation point of set B.

4. Find all positive integers n for which there exists a family F of three-element subsets
of S ={1,2,...,n} satisfying the following two conditions:

(i) for any two different elements a,b € S, there exists exactly one A € F containing
both a, b;

(i) if a,b,c,z,y, z are elements of S such that if {a,b,x},{a,c,y},{b,¢c,z} € F, then
{z,y,2} € F.

Solution. The condition (i) of the problem allows us to define a (well-defined) operation
x on the set S given by

a* b= cif and only if {a,b,c} € F, where a # b.

We note that this operation is still not defined completely (we need to define a * a), but
nevertheless let us investigate its features. At first, due to (i), for a # b the operation
obviously satisfies the following three conditions:
(a) a #axb#b;
(b) axb="bxa;
(c) ax(axb)=0b.
What does the condition (ii) give? It claims that
() z*x(axc)=xxy=z=bxc=(xxa)*c
for any three different x,a,c, i.e. that the operation is associative if the arguments are
different. Now we can complete the definition of *. In order to save associativity for non-
different arguments, i.e. to make b = ax (a*b) = (axa)*b hold, we will add to S an extra
element, call it 0, and define
(d)axa=0and ax0=0%xa=a.
Now it is easy to check that, for any a,b,c € SU{0}, (a),(b),(c) and (d), still hold, and
(e)axbxc:=(axb)xc=ax(bxc).
We have thus obtained that (S U {0}, %) has the structure of a finite Abelian group,
whose elements are all of order two. Since the order of every such group is a power of 2,
we conclude that [SU {0} =n+1=2" and n = 2™ — 1 for some integer m > 1.

Given n = 2™ —1, according to what we have proven till now, we will construct a family
of three-element subsets of S satisfying (i) and (ii). Let us define the operation * in the
following manner:

if a =ag+2a1+...+2" a1 and b = by + 2by + ...+ 2™ b, 4, where a;, b;
are either 0 or 1, we put a * b = |ag — bo| + 2|a; — by + ... + 2™ Ham_1 — bu_1].



It is simple to check that this * satisfies (a),(b),(c) and (e’). Therefore, if we include in
F all possible triples a, b, a x b, the condition (i) follows from (a),(b) and (c), whereas the
condition (ii) follows from (e’)

The answer is: n = 2™ — 1.

5. (a) Show that for each function f: Q x Q — R there exists a function g : Q — R such

that f(z,y) < g(z) + g(y) for all z,y € Q.
(b) Find a function f : R x R — R for which there is no function g : R — R such that

f(z,y) < g(x) + g(y) for all 7,y € R.

Solution. a) Let ¢ : Q@ — N be a bijection. Define g(z) = max{|f(s,t)| : s,t € Q, ¢(s) <

p(x), o(t) < p(x)}. We have f(z,y) < max{g(z),g(y)} < g(z) + g(y).
b) We shall show that the function defined by f(x,y) = — for x # y and f(x,z) =0

eyl
satisfies the problem. If, by contradiction there exists a function g as above, it results, that

9(y) > m — f(x) for z,y € R, = # y; one obtains that for each = € R, %13’:12 g(y) = oc.

We show, that there exists no function ¢ having an infinite limit at each point of a bounded
and closed interval [a, b].

For each k € NT denote Ay = {z € [a,b] : |g(x)| < k}.

We have obviously [a,b] = U2, Ax. The set [a,b] is uncountable, so at least one of the
sets Ay is infinite (in fact uncountable). This set Ax being infinite, there exists a sequence
in A having distinct terms. This sequence will contain a convergent subsequence (z,)nen
convergent to a point x € [a, b]. But ilirglg g(y) = oo implies that g(x,) — oo, a contradiction

because |g(z,)| < k, Vn € N.

Second solution for part (b). Let S be the set of all sequences of real numbers. The
cardinality of S is | S| = [R| = 2% = 2% — |R|. Thus, there exists a bijection h : R — S.
Now define the function f in the following way. For any real x and positive integer n,
let f(x,n) be the nth element of sequence h(z). If y is not a positive integer then let
f(z,y) = 0. We prove that this function has the required property.

Let g be an arbitrary R — R function. We show that there exist real numbers z,y
such that f(x,y) > g(z) + g(y). Consider the sequence (n+ ¢g(n))2,. This sequence is an
element of S, thus (n+ g¢(n))s, = h(z) for a certain real . Then for an arbitrary positive
integer n, f(z,n) is the nth element, f(x,n) =n + g(n). Choosing n such that n > g(x),
we obtain f(z,n) =n+ g(n) > g(x) + g(n).

6. Let (an)nen be the sequence defined by

n
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Find the limit



if it exists.

Solution. Consider the generating function f(z) = >"’7  ja,z™. By induction 0 < a,, <1,
thus this series is absolutely convergent for |x| < 1, f(0) = 1 and the function is positive
in the interval [0,1). The goal is to compute f(3).

By the recurrence formula,
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