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Problem 1. A standard parabola is the graph of a quadratic polynomial
y = 22 + ax + b with leading coefficient 1. Three standard parabolas with
vertices Vi, V,, V3 intersect pairwise at points Ay, Ay, As. Let A+ s(A) be
the reflection of the plane with respect to the z axis.

Prove that standard parabolas with vertices s (A1), s (As), s (A3) intersect
pairwise at the points s (V7), s (V3), s (V5).

Solution. First we show that the standard parabola with vertex V' contains
point A if and only if the standard parabola with vertex s(A) contains point
s(V).

Let A = (a,b) and V = (v,w). The equation of the standard parabola
with vertex V' = (v,w) is y = (z — v)? + w, so it contains point A if and
only if b = (a — v)? + w. Similarly, the equation of the parabola with vertex
s(A) = (a,—b) is y = (x — a)? — b; it contains point s(V) = (v, —w) if and
only if —w = (v —a)? — b. The two conditions are equivalent.

Now assume that the standard parabolas with vertices V; and V5, V; and
V3, Vo and V3 intersect each other at points As, As, Aq, respectively. Then, by
the statement above, the standard parabolas with vertices s(A4;) and s(As),
s(A;p) and s(A3), s(As2) and s(Aj3) intersect each other at points V3, Vs, V7,
respectively, because they contain these points.

Problem 2. Does there exist a continuously differentiable function f: R — R
such that for every z € R we have f(z) > 0 and f'(z) = f(f(z))?

Solution. Assume that there exists such a function. Since f'(z) = f(f(x)) > 0,
the function is strictly monotone increasing.

By the monotonity, f(z) > 0 implies f(f(x)) > f(0) for all x. Thus, f(0)
is a lower bound for f'(x), and for all z < 0 we have f(z) < f(0)+z- f(0) =
(1 4+ 2)f(0). Hence, if x < —1 then f(z) < 0, contradicting the property
f(z) > 0.

So such function does not exist.



Problem 3. Let n be a positive integer and let

apy = —, by=2" for k=1,2,...,n.

Show that
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Solution. Since k(g) = n(Zj) for all £ > 1, (1) is equivalent to

2:[#+;+...+L]_2_1+2_2+...+2_n (2)
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We prove (2) by induction. For n = 1, both sides are equal to 2.
Assume that (2) holds for some n. Let
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This implies (2) for n + 1.

Problem 4. Let f: [a,b] — [a,b] be a continuous function and let p € [a, b].
Define pg = p and p,.1 = f(pn) for n = 0,1,2,... Suppose that the set
T, =A{pn: n=0,1,2,...} is closed, i.e., if x ¢ T, then there is a § > 0 such
that for all ' € T, we have |2’ — x| > 0. Show that 7, has finitely many
elements.

Solution. If for some n > m the equality p,, = p, holds then 7}, is a finite
set. Thus we can assume that all points pg, p1, ... are distinct. There is
a convergent subsequence p,, and its limit ¢ is in 7},. Since f is continu-
ous pp,+1 = f(Pn,) — f(q), so all, except for finitely many, points p, are
accumulation points of 7,. Hence we may assume that all of them are ac-
cumulation points of T),. Let d = sup{|p,m — pn|: m,n > 0}. Let §, be
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positive numbers such that Y >, d, < g. Let I, be an interval of length less
than d,, centered at p, such that there are there are infinitely many £’s such

that py ¢ U I;, this can be done by induction. Let ng = 0 and n,,,1 be the
j=0

Nm
smallest integer k& > n,, such that p ¢ U I;. Since T, is closed the limit
j=0
of the subsequence (p,,,) must be in T}, but it is impossible because of the
definition of [,,’s, of course if the sequence (p,,, ) is not convergent we may
replace it with its convergent subsequence. The proof is finished.

Remark. If T, = {p1,pa, ...} and each p, is an accumulation point of T},
then T, is the countable union of nowhere dense sets (i.e. the single-element
sets {pn}). If T is closed then this contradicts the Baire Category Theorem.

Problem 5. Prove or disprove the following statements:

(a) There exists a monotone function f: [0,1] — [0,1] such that for each
y € [0,1] the equation f(x) =y has uncountably many solutions x.

(b) There exists a continuously differentiable function f: [0,1] — [0, 1] such
that for each y € [0, 1] the equation f(z) = y has uncountably many solutions
.

Solution. a. It does not exist. For each y the set {x: y = f(x)} is either
empty or consists of 1 point or is an interval. These sets are pairwise disjoint,
so there are at most countably many of the third type.

b. Let f be such a map. Then for each value y of this map there is an zy such
that y = f(z) and f’(z) = 0, because an uncountable set {x: y = f(z)}
contains an accumulation point xy and clearly f’(xy) = 0. For every € > 0
and every zo such that f'(zg) = 0 there exists an open interval I,, such
that if x € I, then |f'(x)| < e. The union of all these intervals I,, may
be written as a union of pairwise disjoint open intervals J,. The image of
each J, is an interval (or a point) of length < ¢ - length(.J,,) due to Lagrange
Mean Value Theorem. Thus the image of the interval [0, 1] may be covered
with the intervals such that the sum of their lengths is € - 1 = ¢. This is not
possible for € < 1.

Remarks. 1. The proof of part b is essentially the proof of the easy part
of A. Sard’s theorem about measure of the set of critical values of a smooth
map.

2. If only continuity is required, there exists such a function, e.g. the first
co-ordinate of the very well known Peano curve which is a continuous map
from an interval onto a square.
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where || -||2 denotes the Euclidean norm on R™. Assume that an n X n matrix
A with real entries satisfies [|A¥ — A*7!|| < z5i= for all positive integers k.
Prove that || A*|| < 2002 for all positive integers k.

Problem 6. For an nxn matrix M with real entries let || M || =

Solution.

Lemma 1. Let (a,)n>0 be a sequence of non-negative numbers such that
Qo —aok 11 < ai, Aop11—Qopr2 < arayy for any k > 0 and lim sup na,, < 1/4.
Then limsup /a, < 1.

Proof. Let ¢; = sup,»q(n + 1)a, for I > 0. We will show that ¢; 41 < 4c.

Indeed, for any integer n > 2*! there exists an integer k > 2! such that
2

. C
n = 2k or n = 2k + 1. In the first case there is ag — aggpr1 < ai < W <
4c? 4c? . .
T—'f-l - TJ’FQ, whereas in the second case there is agpi1 — dopro < apagpyy <
012 < 4cl2 4cl2
(k+1)(k+2) = 2k+2  2k+3"

4cl2 . . .
Hence a sequence (an — n_—|—1>">2l+1 1S non—decreasmg and its terms are

4c?
] +1
g for o> 270,

meaning that ¢, < 4cf. This implies that a sequence ((4¢;)? )50 is non-
increasing and therefore bounded from above by some number ¢ € (0, 1) since
all its terms except finitely many are less than 1. Hence ¢; < q2£ for [ large
enough. For any n between 2 and 2!*! there is a, < L < P < (V)"
yielding lim sup {/a,, < /q < 1, yielding limsup /a, < ,/q < 1, which ends
the proof.

non-positive since it converges to zero. Therefore a, <

Lemma 2. Let T be a linear map from R™ into itself. Assume that
limsup n|| 7" — T"|| < 1/4. Then limsup |77+ —T"||'/" < 1. In particular
T" converges in the operator norm and 7" is power bounded.

Proof. Put a,, = ||[T™" — T™||. Observe that
Tk+m+1 o Tk—l—m — (Tk+m+2 _ Tk—l—m-‘,—l) o (Tk-l—l o Tk)(Tm—l—l . Tm)

implying that axim < @gymi1 + aram. Therefore the sequence (a,)m>o sat-

isfies assumptions of Lemma 1 and the assertion of Proposition 1 follows.

Remarks. 1. The theorem proved above holds in the case of an operator
T which maps a normed space X into itself, X does not have to be finite
dimensional.

2. The constant 1/4 in Lemma 1 cannot be replaced by any greater number
since a sequence a,, = ﬁ satisfies the inequality axim — apime1 < axa,, for
any positive integers k£ and m whereas it does not have exponential decay.
3. The constant 1/4 in Lemma 2 cannot be replaced by any number greater

that 1/e. Consider an operator (T'f)(z) = xf(x) on L*([0,1]). One can easily
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check that limsup |7 — T"|| = 1/e, whereas T™ does not converge in the
operator norm. The question whether in general lim sup n||T""! — T"|| < oo
implies that T" is power bounded remains open.

Remark The problem was incorrectly stated during the competition: in-
stead of the inequality ||A* — A*"Y| < 5=k, the inequality [|A* — A*1| <

2002k’
1T e 1 ke
L - k_
so0z, Was assumed. If A = (0 1 then A" = <O 1 ) Therefore
AF — AR = (8 g , so for sufficiently small € the condition is satisfied

although the sequence (||A*||) is clearly unbounded.



