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Problem 1.

Let r, s ≥ 1 be integers and a0, a1, . . . , ar−1, b0, b1, . . . , bs−1 be real non-
negative numbers such that

(a0 +a1x+a2x
2 + . . .+ar−1x

r−1 +xr)(b0 + b1x+ b2x
2 + . . .+ bs−1x

s−1 +xs) =

1 + x + x2 + . . . + xr+s−1 + xr+s.

Prove that each ai and each bj equals either 0 or 1.

Solution. Multiply the left hand side polynomials. We obtain the following
equalities:

a0b0 = 1, a0b1 + a1b0 = 1, . . .

Among them one can find equations

a0 + a1bs−1 + a2bs−2 + . . . = 1

and

b0 + b1ar−1 + b2ar−2 + . . . = 1.

From these equations it follows that a0, b0 ≤ 1. Taking into account that
a0b0 = 1 we can see that a0 = b0 = 1.

Now looking at the following equations we notice that all a’s must be less
than or equal to 1. The same statement holds for the b’s. It follows from
a0b1 +a1b0 = 1 that one of the numbers a1, b1 equals 0 while the other one must
be 1. Follow by induction.

Problem 2.

Let a0 =
√

2, b0 = 2, an+1 =

√

2−
√

4− a2
n, bn+1 =

2bn

2 +
√

4 + b2
n

.

a) Prove that the sequences (an), (bn) are decreasing and converge to 0.
b) Prove that the sequence (2nan) is increasing, the sequence (2nbn) is de-

creasing and that these two sequences converge to the same limit.
c) Prove that there is a positive constant C such that for all n the following

inequality holds: 0 < bn − an <
C

8n
.

Solution. Obviously a2 =
√

2−
√

2 <
√

2. Since the function f(x) =
√

2−
√

4− x2 is increasing on the interval [0, 2] the inequality a1 > a2 implies
that a2 > a3. Simple induction ends the proof of monotonicity of (an). In the

same way we prove that (bn) decreases

(

just notice that g(x) =
2x

2 +
√

4 + x2
=

2/
(

2/x +
√

1 + 4/x2
)

)

. It is a matter of simple manipulation to prove that

2f(x) > x for all x ∈ (0, 2), this implies that the sequence (2nan) is strictly
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increasing. The inequality 2g(x) < x for x ∈ (0, 2) implies that the sequence

(2nbn) strictly decreases. By an easy induction one can show that a2
n =

4b2
n

4+b2
n

for positive integers n. Since the limit of the decreasing sequence (2nbn) of
positive numbers is finite we have

lim 4na2
n = lim

4 · 4nb2
n

4 + b2
n

= lim 4nb2
n .

We know already that the limits lim 2nan and lim 2nbn are equal. The first
of the two is positive because the sequence (2nan) is strictly increasing. The
existence of a number C follows easily from the equalities

2nbn − 2nan =
(

4nb2
n −

4n+1b2
n

4 + b2
n

)

/
(

2nbn + 2nan

)

=
(2nbn)4

4 + b2
n

· 1

4n
· 1

2n(bn + an)

and from the existence of positive limits lim 2nbn and lim 2nan.
Remark. The last problem may be solved in a much simpler way by

someone who is able to make use of sine and cosine. It is enough to notice that

an = 2 sin
π

2n+1
and bn = 2 tan

π

2n+1
.

Problem 3.

Find the maximum number of points on a sphere of radius 1 in R
n such that

the distance between any two of these points is strictly greater than
√

2.

Solution. The unit sphere in R
n is defined by

Sn−1 =

{

(x1, . . . , xn) ∈ R
n|

n
∑

k=1

x2
k = 1

}

.

The distance between the points X = (x1, . . . , xn) and Y = (y1, . . . , yn) is:

d2(X, Y ) =
n
∑

k=1

(xk − yk)2.

We have

d(X, Y ) >
√

2 ⇔ d2(X, Y ) > 2

⇔
n
∑

k=1

x2
k +

n
∑

k=1

y2
k + 2

n
∑

k=1

xkyk > 2

⇔
n
∑

k=1

xkyk < 0

Taking account of the symmetry of the sphere, we can suppose that

A1 = (−1, 0, . . . , 0).

For X = A1,
n
∑

k=1

xkyk < 0 implies y1 > 0, ∀Y ∈ Mn.

Let X = (x1, X), Y = (y1, Y ) ∈ Mn\{A1}, X, Y ∈ R
n−1.
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We have

n
∑

k=1

xkyk < 0 ⇒ x1y1 +

n−1
∑

k=1

xkyk < 0 ⇔
n−1
∑

k=1

x′ky′k < 0,

where

x′k =
xk

√

∑

x2
k

, y′k =
yk

√

∑

y2
k

.

therefore

(x′1, . . . , x
′
n−1), (y

′
1, . . . , y

′
n−1) ∈ Sn−2

and verifies
n
∑

k=1

xkyk < 0.

If an is the search number of points in R
n we obtain an ≤ 1 + an−1 and

a1 = 2 implies that an ≤ n + 1.
We show that an = n + 1, giving an example of a set Mn with (n + 1)

elements satisfying the conditions of the problem.

A1 = (−1, 0, 0, 0, . . . , 0, 0)
A2 =

(

1
n ,−c1, 0, 0, . . . , 0, 0

)

A3 =
(

1
n , 1

n−1 · c1,−c2, 0, . . . , 0, 0
)

A4 =
(

1
n , 1

n−1 · c1,
1

n−1 · c2,−c3, . . . , 0, 0
)

An−1 =
(

1
n , 1

n−1 · c1,
1

n−2 · c2,
1

n−3 · c3, . . . ,−cn−2, 0
)

An =
(

1
n , 1

n−1 · c1,
1

n−2 · c1,
1

n−3 · c3, . . . ,
1
2 · cn−2,−cn−1

)

An+1 =
(

1
n , 1

n−1 · c1,
1

n−2 · c2,
1

n−3 · c3, . . . ,
1
2 · cn−2, cn−1

)

where

ck =

√

(

1 +
1

n

)(

1− 1

n− k + 1

)

, k = 1, n− 1.

We have
n
∑

k=1

xkyk = − 1
n < 0 and

n
∑

k−=1

x2
k = 1, ∀X, Y ∈ {A1, . . . , An+1} .

These points are on the unit sphere in R
n and the distance between any two

points is equal to

d =
√

2

√

1 +
1

n
>
√

2.

Remark. For n = 2 the points form an equilateral triangle in the unit
circle; for n = 3 the four points from a regular tetrahedron and in R

n the points
from an n dimensional regular simplex.

Problem 4.

Let A = (ak,`)k,`=1,...,n be an n × n complex matrix such that for each
m ∈ {1, . . . , n} and 1 ≤ j1 < . . . < jm ≤ n the determinant of the matrix
(ajk ,j`

)k,`=1,...,m is zero. Prove that An = 0 and that there exists a permutation
σ ∈ Sn such that the matrix

(aσ(k),σ(`))k,`=1,...,n

3



has all of its nonzero elements above the diagonal.

Solution. We will only prove (2), since it implies (1). Consider a directed
graph G with n vertices V1, . . . , Vn and a directed edge from Vk to V` when
ak,` 6= 0. We shall prove that it is acyclic.

Assume that there exists a cycle and take one of minimum length m. Let
j1 < . . . < jm be the vertices the cycle goes through and let σ0 ∈ Sn be a
permutation such that ajk ,jσ0(k)

6= 0 for k = 1, . . . , m. Observe that for any
other σ ∈ Sn we have ajk,jσ(k)

= 0 for some k ∈ {1, . . . , m}, otherwise we would
obtain a different cycle through the same set of vertices and, consequently, a
shorter cycle. Finally

0 = det(ajk ,j`
)k,`=1,...,m

= (−1)sign σ0

m
∏

k=1

ajk,jσ0(k)
+
∑

σ 6=σ0

(−1)sign σ
m
∏

k=1

ajk,jσ(k)
6= 0,

which is a contradiction.
Since G is acyclic there exists a topological ordering i.e. a permutation

σ ∈ Sn such that k < ` whenever there is an edge from Vσ(k) to Vσ(`). It is easy
to see that this permutation solves the problem.

Problem 5. Let R be the set of real numbers. Prove that there is no
function f : R → R with f(0) > 0, and such that

f(x + y) ≥ f(x) + yf(f(x)) for allx, y ∈ R.

Solution. Suppose that there exists a function satisfying the inequality. If
f(f(x)) ≤ 0 for all x, then f is a decreasing function in view of the inequalities
f(x + y) ≥ f(x) + yf(f(x)) ≥ f(x) for any y ≤ 0. Since f(0) > 0 ≥ f(f(x)),
it implies f(x) > 0 for all x, which is a contradiction. Hence there is a z such
that f(f(z)) > 0. Then the inequality f(z + x) ≥ f(z) + xf(f(z)) shows that
lim

x→∞
f(x) = +∞ and therefore lim

x→∞
f(f(x)) = +∞. In particular, there exist

x, y > 0 such that f(x) ≥ 0, f(f(x)) > 1, y ≥ x+1
f(f(x))−1 and f(f(x+y+1)) ≥ 0.

Then f(x + y) ≥ f(x) + yf(f(x)) ≥ x + y + 1 and hence

f(f(x + y)) ≥ f(x + y + 1) +
(

f(x + y)− (x + y + 1)
)

f(f(x + y + 1)) ≥
≥ f(x + y + 1) ≥ f(x + y) + f(f(x + y)) ≥
≥ f(x) + yf(f(x)) + f(f(x + y)) > f(f(x + y)).

This contradiction completes the solution of the problem.
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Problem 6.

For each positive integer n, let fn(ϑ) = sin ϑ · sin(2ϑ) · sin(4ϑ) · · · sin(2nϑ).
For all real ϑ and all n, prove that

|fn(ϑ)| ≤ 2√
3
|fn(π/3)|.

Solution. We prove that g(ϑ) = | sin ϑ|| sin(2ϑ)|1/2 attains its maximum
value (

√
3/2)3/2 at points 2kπ/3 (where k is a positive integer). This can be

seen by using derivatives or a classical bound like

|g(ϑ)| = | sin ϑ|| sin(2ϑ)|1/2 =

√
2

4
√

3

(

4

√

| sin ϑ| · | sinϑ| · | sin ϑ| · |
√

3 cosϑ|
)2

≤
√

2
4
√

3
· 3 sin2 ϑ + 3 cos2 ϑ

4
=

(√
3

2

)3/2

.

Hence

∣

∣

∣

∣

fn(ϑ)

fn(π/3)

∣

∣

∣

∣

=

∣

∣

∣

∣

g(ϑ) · g(2ϑ)1/2 · g(4ϑ)3/4 · · · g(2n−1ϑ)E

g(π/3) · g(2π/3)1/2 · g(4π/3)3/4 · · · g(2n−1π/3)E

∣

∣

∣

∣

·
∣

∣

∣

∣

sin(2nϑ)

sin(2nπ/3)

∣

∣

∣

∣

1−E/2

≤
∣

∣

∣

∣

sin(2nϑ)

sin(2nπ/3)

∣

∣

∣

∣

1−E/2

≤
(

1√
3/2

)1−E/2

≤ 2√
3
.

where E = 2
3 (1− (−1/2)n). This is exactly the bound we had to prove.
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