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Second day

Problem 1.
Let r,s > 1 be integers and ag,ai,...,a,-1,b9,b1,...,bs—1 be real non-
negative numbers such that

(ag +arz+asx’+.. . +ap_12" ! +2")(bg +hx+bor? 4. b2t 4 at) =

14+ao+z2+.. .+t 4 mts,

Prove that each a; and each b; equals either 0 or 1.

Solution. Multiply the left hand side polynomials. We obtain the following
equalities:
agbo =1, agbi +aibg =1,

Among them one can find equations

ap + ale,1 + ang,Q +...= 1

and

bo + blaT,1 + bQGJT,Q + ... = 1.

From these equations it follows that ag,bg < 1. Taking into account that
agbg = 1 we can see that ag = by = 1.

Now looking at the following equations we notice that all a’s must be less
than or equal to 1. The same statement holds for the b’s. It follows from
aogby +a1by = 1 that one of the numbers a1, b; equals 0 while the other one must
be 1. Follow by induction.

Problem 2. o
— — - 2 — n
Let apg = \/5, bo = 2, Ap+1 = 2 4 ay, bn+1 = 9+ \/m .
a) Prove that the sequences (ay,), (b,) are decreasing and converge to 0.
b) Prove that the sequence (2"a,,) is increasing, the sequence (2"b,,) is de-
creasing and that these two sequences converge to the same limit.
c¢) Prove that there is a positive constant C' such that for all n the following

inequality holds: 0 < b, —a, < 3

Solution. Obviously as = V2 —+v2 < /2. Since the function flz) =

2 — /4 — 2? is increasing on the interval [0, 2] the inequality a; > ag implies

that as > as. Simple induction ends the proof of monotonicity of (a,). In the
2x

T2+ Vita?

2/ (2/35 ++v1+ 4/952)). It is a matter of simple manipulation to prove that

same way we prove that (b,) decreases (just notice that g(x)

2f(z) > x for all x € (0,2), this implies that the sequence (2"ay,) is strictly



increasing. The inequality 2g(z) < z for = € (0,2) implies that the sequence
402

112
for positive integers n. Since the limit of the decreasing sequence (2"b,) of
positive numbers is finite we have

(27b,,) strictly decreases. By an easy induction one can show that a? =

4-47b2
lim4"a? = lim " b; = lim4"v? .

n

We know already that the limits lim 2"a,, and lim 2"b,, are equal. The first
of the two is positive because the sequence (2"a,,) is strictly increasing. The
existence of a number C follows easily from the equalities

4nip2
4+b2

(2"b,)* 1 1

2", — 2"a, = (47b — P YT/ ETEPEY
an = (470, 4+02 47 27(b, + an)

)/ (27bn +2"ay) =

and from the existence of positive limits lim 2"b,, and lim 2"a,,.
Remark. The last problem may be solved in a much simpler way by
someone who is able to make use of sine and cosine. It is enough to notice that

T T
5T and b, = 2tan ——

an:2$1n2nJr STE

Problem 3.

Find the maximum number of points on a sphere of radius 1 in R™ such that
the distance between any two of these points is strictly greater than v/2.

Solution. The unit sphere in R" is defined by

Sp_1 = {(ml,...,xn) 6R”|in = 1}.
k=1

The distance between the points X = (x1,...,2,) and Y = (y1,...,y,) is:

PX,Y) =) (wx —yr)*.

k=1
We have

dAX,Y)>V2 & d*(X,Y)>2
n n n
D ekt i 2) wyn>2
k=1 k=1 k=1
n
4 Z:ckyk <0
k=1
Taking account of the symmetry of the sphere, we can suppose that

Ay = (-1,0,...,0).

For X = Ay, Y zryr <0 implies y; > 0, VY € M,,.
=1
Let X = (21, X), Y = (11,Y) € M,\{4:}, X,Y ¢ R" 1,



‘We have

n n—1 n—1
Z:ckyk < 0= zy1 + kayk <0& Zz;y,’c <0,

k=1 k=1 k=1
where
/o Tk !’ gk
.Tk = 7_27 yk = 7_2 .
V2T, V2T
therefore

(‘rllﬂ c "‘T;L—l)7 (yia cee ay;z—l) € S"—2

n
and verifies > xpyr < 0.
k=1
If a, is the search number of points in R" we obtain a,, < 1+ a,_1 and
a1 = 2 implies that a, <n + 1.
We show that a, = n + 1, giving an example of a set M, with (n + 1)
elements satisfying the conditions of the problem.

A = (~1,0,0,0,...,0,0)
AQZ(%,7C1,O,O,...,O7O)
A= (L 2 -cl,—cQ,o,...,o,o)

n’n—1
—_ (1 1 1
Ay = o n—1 €1, -1 - €2, —C3, 5070)

_ (1 1 1 1

An—l = (E’ o - Cq, n_2 - C2, n_3 -Cg,...,—cn_Q,O)
_ (1 1 1 1 1

An = (ﬁ’ pr— - C1, P - C1, n_3 "C3y.-h 50 Cn_g,—cn_l)

_ (1 1 1 1 1
AnJrl - (;; 1 Cly 3 €2, 5—3"C3,---,5" Cn72acn71)

1 1 S
Ck\/(lﬁLﬁ) <1m), k—l,nfl.

n n
We have > zpyr = f% <0and Y zi=1, VX, Ye{A,...,Ap1}.
k=1 k—=1
These points are on the unit sphere in R™ and the distance between any two
points is equal to

1
d=vV24/1+ = > V2.
n

Remark. For n = 2 the points form an equilateral triangle in the unit
circle; for n = 3 the four points from a regular tetrahedron and in R™ the points
from an n dimensional regular simplex.

Problem 4.
Let A = (ak)ke=1,..,n be an n x n complex matrix such that for each
m € {l,...,n} and 1 < 51 < ... < jm < n the determinant of the matrix

(@jy 5o k,0=1,...,m i zero. Prove that A™ = 0 and that there exists a permutation
o € S, such that the matrix

(Ao (k),0(0) ) hot=1,...,n



has all of its nonzero elements above the diagonal.

Solution. We will only prove (2), since it implies (1). Consider a directed
graph G with n vertices Vp,...,V, and a directed edge from Vi to V; when
ar¢ # 0. We shall prove that it is acyclic.

Assume that there exists a cycle and take one of minimum length m. Let
j1 < ... < jm be the vertices the cycle goes through and let oy € S, be a
permutation such that aj, j, ., # 0 for k = 1,...,m. Observe that for any
other o € S;, we have ajy j,, = 0 for some k € {1,...,m}, otherwise we would
obtain a different cycle through the same set of vertices and, consequently, a
shorter cycle. Finally

0 = det(aj, j,)k.e=1,...,m

m
Sl n oo § : Sl n o L
& H a]kdao(k) + & H a]ka]a(k) 7& Oa
k=1

o#ogp

which is a contradiction.

Since G is acyclic there exists a topological ordering i.e. a permutation
o € Sp such that k < £ whenever there is an edge from V() to Vy(p). It is easy
to see that this permutation solves the problem.

Problem 5. Let R be the set of real numbers. Prove that there is no
function f: R — R with f(0) > 0, and such that

fle+y) = f(z) +yf(f(z)) forallz,y € R.

Solution. Suppose that there exists a function satisfying the inequality. If
f(f(z)) <0 for all z, then f is a decreasing function in view of the inequalities

fx+y) > f@) +yf(f(2)) = f(z) for any y < 0. Since f(0) > 0 > f(f(x)),

it implies f(z) > 0 for all x, which is a contradiction. Hence there is a z such
that f(f(z)) > 0. Then the inequality f(z 4+ z) > f(z) + = f(f(z)) shows that
lim f(x) = +o0 and therefore lim f(f(z)) = +oo0. In particular, there exist
x,y > 0 such that f(z) >0, f(f(z)) > 1,y > Wﬂl)_l and f(f(z4+y+1)) >0.
Then f(z+vy) > f(z) +yf(f(x)) > 2+ y+ 1 and hence

f(f(x+y) f@+y+)+ (flea+y) —@+y+1)f(fz+y+1) >
fle+y+1) > flx+y) + f(flz+y))
(

>
f@) +yf(f@)+ f(fz+y) > f(f(z+y)).

This contradiction completes the solution of the problem.

>
>
2



Problem 6.
For each positive integer n, let f,(¥) = sin® - sin(29) - sin(49) - - - sin(2"9).
For all real ¥ and all n, prove that

2
[fn ()] < EIfn(ﬂ/i%)l-

Solution. We prove that g(9) = |sind||sin(29)|'/? attains its maximum
value (v/3/2)%/2 at points 2#7/3 (where k is a positive integer). This can be
seen by using derivatives or a classical bound like

5 2
lg(9)] = | sin || sin(209)|'/? = £ <{1/| sind| - | sind| - | sind| - |\/§c0s19|)

V3
<\/§ 3sin219+3c08219_ V3 i
=3 4 “\2) -
Hence
Fal®) H g(0) - g(20)/2 - g(49)3/4 .. g2 '9)F || sin(2"9) |'TF/
fa(m/3)| Ng(m/3) - g(2m[3)1/2 - g(4m/3)3/4 - - g(2n—1m [3)F | |sin(2"7/3)

sin(2"9)
~ |sin(277/3)

1-E/2 1 1-E/2 9
< | —=— < =
- (ﬁ/fz) RVE]

where E = 2(1 — (—1/2)™). This is exactly the bound we had to prove.




