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PROBLEMS AND SOLUTIONS

First day — July 29, 1994

Problem 1. (13 points)

a) Let A be a n X n, n > 2, symmetric, invertible matrix with real
positive elements. Show that z, < n? — 2n, where z, is the number of zero
elements in A7,

b) How many zero elements are there in the inverse of the n x n matrix

Solution. Denote by a;; and b;; the elements of A and A~1, respectively.

n
Then for k # m we have ) agib;, = 0 and from the positivity of a;; we
1=0
conclude that at least one of {b;, : i = 1,2,...,n} is positive and at least
one is negative. Hence we have at least two non-zero elements in every
column of A~!. This proves part a). For part b) all b;; are zero except

b171 = 2, bn,n = (—1)”, bi,iJrl = bi+1,i = (—1)1 for ¢ = 1,2, ey — 1.

Problem 2. (13 points)
Let f € Cl(a,b), limJr f(z) = +o0, hr? f(x) = —o0 and

f'(x)+ f?(x) > —1 for = € (a,b). Prove that b—a > 7 and give an example
where b — a = 7.
Solution. From the inequality we get

d /
%(arctgf(x) +z) = % +1>0

for z € (a,b). Thus arctg f(z)+x is non-decreasing in the interval and using
the limits we get g +a < —g + b. Hence b — a > w. One has equality for
f(z) =cotgx,a=0,b=m.

Problem 3. (13 points)



Given a set S of 2n — 1, n € N, different irrational numbers. Prove
that there are n different elements x1,xs,...,z, € S such that for all non-
negative rational numbers a1, ao,...,a, with a1 +as+---+ a,, > 0 we have
that a1x1 + asxs + - - - + ap Ty, is an irrational number.

Solution. Let I be the set of irrational numbers, Q — the set of rational
numbers, Q1 = QN [0, 00). We work by induction. For n = 1 the statement
is trivial. Let it be true for n — 1. We start to prove it for n. From the
induction argument there are n — 1 different elements x1,x2,..., 2,1 € S
such that

a1r1 + agro + -+ ap_1Tp—1 €1
for all a1,as,...,an € Q7 with ay +as + -+ + an_1 > 0.

(1)

Denote the other elements of S by x,, Zn11,...,T2,—1. Assume the state-
ment is not true for n. Then for k = 0,1,...,n — 1 there are r, € Q such
that
n—1 n—1
(2) Z bikTi + cpTpik = 1 for some by, c € QT, Z b + ¢, > 0.
i=1 i=1
Also
n—1 n—1
(3) Z dptnir = R for some dj, € Q7 Z dp. >0, ReQ.
k=0 k=0

If in (2) ¢ = 0 then (2) contradicts (1). Thus ¢, # 0 and without loss of
n—1

generality one may take ¢ = 1. In (2) also > by > 0 in view of x4 € L.
i=1

Replacing (2) in (3) we get

n—1 n—1 n—1 /n—1
Z dp (— Z bipr; + ’I“k> =R or Z (Z dkbzk> x; € Q,
k=0

i=1 i=1 \k=0

which contradicts (1) because of the conditions on b's and d’s.

Problem 4. (18 points)

Let o € R\ {0} and suppose that F' and G are linear maps (operators)
from R" into R" satisfying F oG — G o F = oF.

a) Show that for all k € N one has F¥ o G — G o F¥ = akF*.

b) Show that there exists k& > 1 such that F* = 0.



Solution. For a) using the assumptions we have
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b) Consider the linear operator L(F) = FoG—GoF acting over all n xn
matrices F. It may have at most n? different eigenvalues. Assuming that
Fk 20 for every k we get that L has infinitely many different eigenvalues
ak in view of a) — a contradiction.

Problem 5. (18 points)
) Let f € C[0,b], g € C(R) and let g be periodic with period b. Prove

that / f(z)g(nz)dz has a limit as n — oo and

nh_)Igo /Obf(m)g(nx)dx = %/Obf(m)dx : /Ob g(x)dzx.

™ sin x

b) Find

lim — 5 dx
n—oo Jo 1+ 3cos“nx

Solution. Set [|g|l; = / lg(x)|dz and
0

w(f;t) =sup{|f(z) = ()] = 2,y €08, [x—y| <t}

In view of the uniform continuity of f we have w(f,t) — 0 as t — 0. Using
the periodicity of g we get

/b f(@)g(nx)dx = Z /bk/n g(nz)dx

b(k 1)/n

bk/n
=S fh/m) [ g+ 3 / {f(z) — F(bk/n)}g(na)da

Pt (k=1)/n = Jot-1/m

:%j F(bk/m) /0” (2)dz + O(w(£.b/m)lglh)



12 b bk/n b

> (ﬁ(bk/n) o f(w)dz> | st@)da+ 0wt sbmlal)
1 b b

=5 | f@da [ g@)da -+ O(sbm)lgl).

This proves a). For b) we set b =, f(z) =sinz, g(x) = (1 + 3cos 2z)~L.
From a) and

s ™ T
/ sin xdzr = 2, / (1 + 3cos %z) " tdx = =
0 0 2

we get
” sinx
lim ——dz =1.
n—oo o 1+ 3cos 2nx

Problem 6. (25 points)
Let f € C?[0,N] and |f'(z)| < 1, f"(z) > 0O for every x € [0, N]. Let
0<mg<m<--<mg< N be integers such that n; = f(m;) are also

integers for ¢ = 0,1,...,k. Denote b; = n; — n;_1 and a; = m; — m;_ for
i=1,2,... k.
a) Prove that
b b b
<t <2t
al a9 ag

b) Prove that for every choice of A > 1 there are no more than N/A
indices j such that a; > A.

¢) Prove that k < 3N?/3 (i.e. there are no more than 3N?/3 integer
points on the curve y = f(z), € [0, N]).

Solution. a) For i =1,2,... k we have
bi = f(mi) — f(mi-1) = (mi —mi—1) f'(x)

b. .
for some x; € (m;_1,m;). Hence — = f'(x;) and so —1 < — < 1. From the
a; Q;

b,
convexity of f we have that f’ is increasing and — = f'(z;) < f'(zi11) =
a;

i+1
2*1 because of T, <my < Tiy1.
Qi+1



b) Set S4 ={j €{0,1,...,k} : a;j > A}. Then

k
Nka—m():ZaiZ Z a; > A|S4|
i=1 JjESA

and hence |S4| < N/A.

c) All different fractions in (—1, 1) with denominators less or equal A are
no more 242, Using b) we get k < N/A +2A2. Put A= N'/3 in the above
estimate and get k < 3N2/3,

Second day — July 30, 1994

Problem 1. (14 points)
Let f € Cl[a,b], f(a) = 0 and suppose that A € R, A > 0, is such that

| (@)] < Alf(2)]

for all = € [a,b]. Is it true that f(z) =0 for all = € [a,b]?

Solution. Assume that there is y € (a,b] such that f(y) # 0. Without
loss of generality we have f(y) > 0. In view of the continuity of f there exists
¢ € la,y) such that f(c) =0 and f(z) > 0 for z € (¢,y]. For x € (c,y] we
have |f'(z)| < Af(z). This implies that the function g(x) = In f(z) — Az is

/
not increasing in (¢, y] because of ¢'(z) = ];((x)) —A<0. ThusIn f(z)— Az >
x
In f(y) — Ay and f(x) > e MM f(y) for = € (c,y]. Thus

0= f(c) = f(e+0) > Mf(y) >0

— a contradiction. Hence one has f(z) = 0 for all = € [a, b].

Problem 2. (14 points)
Let f:R? — R be given by flz,y) = (2% - y2)e_“’2_92.
a) Prove that f attains its minimum and its maximum.

0 0
b) Determine all points (z,y) such that a—i(w,y) = 8—5(30,3/) = 0 and

determine for which of them f has global or local minimum or maximum.
Solution. We have f(1,0) = e 1, f(O 1) ~1and te=t < 2¢72 for

t > 2. Therefore \f(ac )| < (22 + y2)e =Y’ <2€ 2<et for (x,y) ¢

M = {(u,v) : u?+v? < 2} and f cannot attain its minimum and its



maximum outside M. Part a) follows from the compactness of M and the
0
continuity of f. Let (x,y) be a point from part b). From a—f(ac,y) =
x
2z(1 — 2% + y2)efx27y2 we get

(1) z(1—-2*+y*) =0.
Similarly
(2) y(1+2° —y%) =0.

All solutions (x,y) of the system (1), (2) are (0,0), (0,1), (0,-1), (1,0)
and (—1,0). One has f(1,0) = f(—~1,0) = e~ ! and f has global maximum
at the points (1,0) and (—1,0). One has f(0,1) = f(0,—1) = —e~! and
f has global minimum at the points (0,1) and (0,—1). The point (0,0)
is not an extrema point because of f(x,0) = 22 > 0 if z % 0 and
f(y,0) = —y2eV <0 if y £ 0.

Problem 3. (14 points)
Let f be a real-valued function with n + 1 derivatives at each point of
R. Show that for each pair of real numbers a, b, a < b, such that

1m<f(b>+f’(b)+---+f<"><b)) i
fla) + f(a) + -+ f™(a)

there is a number ¢ in the open interval (a,b) for which

F () = flo)
Note that In denotes the natural logarithm.

Solution. Set g(z) = (f(x) + f(x)+- -+ f(”)(x)) e~*. From the
assumption one get g(a) = g(b). Then there exists ¢ € (a,b) such that
g'(c) = 0. Replacing in the last equality ¢'(z) = (f(”“)(x) — f(a;)) e~ " we
finish the proof.

Problem 4. (18 points)
Let A be a n x n diagonal matrix with characteristic polynomial

(x — 01)d1 (x — 02)d2 v (= ck)dk,

where c1, ca, ..., ¢ are distinct (which means that ¢; appears d; times on the
diagonal, co appears ds times on the diagonal, etc. and di+da+- - -+di = n).



Let V' be the space of all n x n matrices B such that AB = BA. Prove that
the dimension of V is
di +d5+ - +d;.

Solution. Set A = (aij);szl, B = (bij)?,j:p AB = (x/[:j):'ljtjzl and
BA = (yij)?,jzl' Then Ti5 = aiibij and Yi; = ajjbij. Thus AB = BA is
equivalent to (ai; — aj;)b;; = 0 for 4,5 = 1,2,...,n. Therefore b;; = 0 if
a;; # aj; and b;; may be arbitrary if a;; = aj;. The number of indices (3, j)
for which a;; = a;; = ¢, for some m = 1,2,...,k is d?,. This gives the
desired result.

Problem 5. (18 points)

Let z1, s, ...,z be vectors of m-dimensional Euclidian space, such that
x1+xo+---+x, = 0. Show that there exists a permutation m of the integers
{1,2,...,k} such that

n

> T

i=1

& 1/2
< <Z||xz\|2> foreach n=1,2,... k.
i=1

Note that || - || denotes the Euclidian norm.

Solution. We define 7 inductively. Set m(1) = 1. Assume 7 is defined
fori=1,2,...,n and also

n 2 n
Y| <D Nzl
i=1 =1

Note (1) is true for n = 1. We choose w(n + 1) in a way that (1) is fulfilled
with n + 1 instead of n. Set y = >~z and A= {1,2,...,k} \ {7(i) : i =
i=1

(1)

1,2,...,n}. Assume that (y,x,) > 0 for all » € A. Then (y, > xr> >0
reA

and in view of y + > z, = 0 one gets —(y,y) > 0, which is impossible.
reA
Therefore there is r € A such that

(2) (y,fﬁr) <0.

Put m(n + 1) = r. Then using (2) and (1) we have

n+1 2

; Zr(i)

= lly + 2 1* = llyl* + 20y, 20) + llz2 > < lyll? + o ]* <




n+1

n
<D Nam@ I+ 2l = D e I
i=1 =1
which verifies (1) for n + 1. Thus we define 7 for every n = 1,2,... k.
Finally from (1) we get
n

2 k
< Nzl <D il
] =1

7 (i)

Problem 6. (22 points)

Find 1 IDQNNijQ ! Note that In denotes the natural
1 NE}IIOO N Z ln]{;ln(N—k') ote al In denotes € natura.

logarithm.
Solution. Obviously

n? N =2 1 m?N N -3 3
1 Ay = > : —1- =
(1) NTON ;ka-ln(N—k)— N I’N N
1
Take M, 2 < M < N/2. Then using that m is decreasing in

[2, N/2] and the symmetry with respect to N/2 one get

lnN{ N—-M-1

1
2+ >+ Z }lnk:-ln(N—k:)S

k=2 k=M+1 k=N-M

<ln2N{ M-1 N-2M-1 }
- N In2-In(N—-2) InM-In(N—- M)
2 MInN In N 1
<. 1—— Oo|——|.
“ In2 N +( )111M+ (lnN)
ChooseM:[ }—i—lto get

In N ) 1 <140 Inln N
C NIn2N/) InN —2Inln N InN/ — InN /°
(1

Estimates (1) and (2) give

I = 1.
Nos N glnk-ln(N—k)



