# International Mathematics Competition for University Students 2020

Select Year:

IMC 2022
 Information Schedule Problems & Solutions Results Contact

## IMC2020: Day 1, Problem 2

Problem 2. Let $\displaystyle A$ and $\displaystyle B$ be $\displaystyle n\times n$ real matrices such that

$\displaystyle \textrm{rk}(AB-BA+I)=1$

where $\displaystyle I$ is the $\displaystyle n\times n$ identity matrix.

Prove that

$\displaystyle \tr(ABAB)-\tr(A^2B^2)=\frac12 n(n-1).$

($\displaystyle \textrm{rk}(M)$ denotes the rank of matrix $\displaystyle M$, i.e., the maximum number of linearly independent columns in $\displaystyle M$. $\displaystyle \tr(M)$ denotes the trace of $\displaystyle M$, that is the sum of diagonal elements in $\displaystyle M$.)

Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics IMC1994 IMC1995 IMC1996 IMC1997 IMC1998 IMC1999 IMC2000 IMC2001 IMC2002 IMC2003 IMC2004 IMC2005 IMC2006 IMC2007 IMC2008 IMC2009 IMC2010 IMC2011 IMC2012 IMC2013 IMC2014 IMC2015 IMC2016 IMC2017 IMC2018 IMC2019 IMC 2020 IMC2021 IMC2022 