| |||||||||
IMC2015: Day 2, Problem 77. Compute lim Proposed by Jan Šustek, University of Ostrava Solution 1. We prove that \lim_{A\to+\infty}\frac1A\int_1^A A^{\frac1x}\dx = 1 \,. For A>1 the integrand is greater than~1, so \frac1A \int_1^A A^{\frac1x}\dx > \frac1A \int_1^A 1\dx = \frac1A(A-1) = 1-\frac1A. In order to find a tight upper bound, fix two real numbers, \delta>0 and K>0, and split the interval into three parts at the points 1+\delta and K\log A. Notice that for sufficiently large A (i.e., for A>A_0(\delta,K) with some A_0(\delta,K)>1) we have 1+\delta<K\log A<A.) For A>1 the integrand is decreasing, so we can estimate it by its value at the starting points of the intervals: \frac1A \int_1^A A^{\frac1x}\dx = \frac1A\left( \int_1^{1+\delta} + \int_{1+\delta}^{K\log A} + \int_{K\log A}^A \right) < = \frac1A\left( \delta\cdot A + (K\log A-1-\delta) A^{\frac1{1+\delta}} + (A-K\log A) A^{\frac1{K\log A}} \right) < < \frac1A\left( \delta A + KA^{\frac1{1+\delta}}\log A + A\cdot A^{\frac1{K\log A}} \right) = \delta+A^{-\frac{\delta}{1+\delta}}\log A + e^{\frac1K}. Hence, for A>A_0(\delta,K) we have 1-\frac1A < \frac1A \int_1^A A^{\frac1x}\dx < \delta+A^{-\frac{\delta}{1+\delta}}\log A + e^{\frac1K}. Taking the limit A\to\infty we obtain 1 \le \liminf_{A\to\infty} \frac1A \int_1^A A^{\frac1x}\dx \le \limsup_{A\to\infty} \frac1A \int_1^A A^{\frac1x}\dx \le \delta + e^{\frac1K}. Now from \delta\to1+0 and K\to\infty we get 1 \le \liminf_{A\to\infty} \frac1A \int_1^A A^{\frac1x}\dx \le \limsup_{A\to\infty} \frac1A \int_1^A A^{\frac1x}\dx \le 1, so \liminf\limits_{A\to\infty} \frac1A \int_1^A A^{\frac1x}\dx =\limsup\limits_{A\to\infty} \frac1A \int_1^A A^{\frac1x}\dx=1 and therefore \lim_{A\to+\infty}\frac1A\int_1^A A^{\frac1x}\dx = 1 \,. Solution 2. We will employ l'Hospital's rule. Let f(A,x)=A^{\frac1x}, g(A,x)=\frac1x A^{\frac1x}, F(A)=\int_1^A f(A,x)\dx and G(A)=\int_1^A g(A,x)\dx. Since \frac\partial{\partial A}f and \frac\partial{\partial A}g are continuous, the parametric integrals F(A) and G(A) are differentiable with respect to A, and F'(A) = f(A,A) + \int_1^A \frac{\partial}{\partial A}f(A,x)\dx = A^{\frac1A} + \int_1^A \frac1x A^{\frac1x-1} \dx = A^{\frac1A} + \frac1A G(A), and G'(A) = g(A,A) + \int_1^A \frac{\partial}{\partial A}g(A,x)\dx = \frac{A^{\frac1A}}{A} + \int_1^A \frac1{x^2} A^{\frac1x-1} \dx = = A^{\frac1A} + \left[ \frac{-1}{\log A} A^{\frac1x-1} \right]_1^A = \frac{A^{\frac1A}}{A} - \frac{A^{\frac1A}}{A\log A} + \frac1{\log A} . Since \lim_{A\to\infty} A^{\frac1A}=1, we can see that \lim_{A\to\infty} G'(A)=0. Aplying l'Hospital's rule to \lim\limits_{A\to\infty}\frac{G(A)}{A} we get \lim_{A\to\infty} \frac{G(A)}{A} = \lim_{A\to\infty} \frac{G'(A)}{1} = 0, so \lim_{A\to\infty} F'(A) = \lim_{A\to\infty} \left( A^{\frac1A} + \frac{G(A)}{A} \right) = 1+0 = 1. Now applying l'Hospital's rule to \lim\limits_{A\to\infty}\frac{F(A)}{A} we get \lim_{A\to+\infty}\frac1A\int_1^A A^{\frac1x}\dx = \lim_{A\to\infty} \frac{F(A)}{A} = \lim_{A\to\infty} \frac{F'(A)}{1} = 1 . | |||||||||
© IMC |