| |||||||||||||||||
IMC2025: Day 1, Problem 4Problem 4. Let \(\displaystyle a\) be an even positive integer. Find all real numbers \(\displaystyle x\) such that \(\displaystyle \left\lfloor \sqrt[a]{b^{a} + x} \cdot b^{a - 1} \right\rfloor = b^{a} + \left\lfloor x/a\right\rfloor \tag{1} \) holds for every positive integer \(\displaystyle b\). (Here \(\displaystyle \lfloor x\rfloor\) denotes the largest integer that is no greater than \(\displaystyle x\).) Yagub Aliyev, ADA University, Baku, Azerbaijan | |||||||||||||||||
© IMC |