| |||||||||
IMC2016: Day 2, Problem 1010. Let A be a n×n complex matrix whose eigenvalues have absolute value at most 1. Prove that ‖ (Here \|B\|=\sup\limits_{\|x\|\leq 1} \|Bx\| for every n\times n matrix B and \|x\|=\sqrt{\sum\limits_{i=1}^n |x_i|^2} for every complex vector x\in\mathbb{C}^n.) Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University Solution 1. Let r=\|A\|. We have to prove \|A^n\| \leq \frac{n}{\ln2} r^{n-1}. As is well-known, the matrix norm satisfies \|XY\|\leq \|X\|\cdot \|Y\| for any matrices X,Y, and as a simple consequence, \|A^k\|\leq \|A\|^k = r^k for every positive integer k. Let \chi(t)=(t-\lambda_1)(t-\lambda_2)\dots (t-\lambda_n)=t^n+c_1t^{n-1}+\dots+c_n be the characteristic polynomial of A. From Vieta's formulas we get |c_k| = \left| \sum_{1\le i_1\lt \ldots\lt i_k\le n} \lambda_{i_1}\cdots\lambda_{i_k} \right| \le \sum_{1\le i_1\lt \ldots\lt i_k\le n} \big|\lambda_{i_1}\cdots\lambda_{i_k} \big| \le \binom{n}{k} \quad (k=1,2,\ldots,n) By the Cayley-Hamilton theorem we have \chi(A)=0, so \|A^n\| = \|c_1A^{n-1}+\dots+c_n\| \leq \sum_{k=1}^n \binom{n}k \|A^k\| \leq \sum_{k=1}^n \binom{n}k r^k = (1+r)^n-r^n. Combining this with the trivial estimate \|A^n\|\le r^n, we have \|A^n\| \leq \min\big( r^n, (1+r)^n-r^n) \big). Let r_0=\frac1{\sqrt[n]2-1}; it is easy to check that the two bounds are equal if r=r_0, moreover r_0 = \frac1{e^{\ln2/n}-1} \lt \frac{n}{\ln2}. For r\leq r_0 apply the trivial bound: \|A^n\| \leq r^n \leq r_0\cdot r^{n-1} \lt \frac{n}{\ln2} r^{n-1}. For r\gt r_0 we have \|A^n\| \leq (1+r)^n-r^n = r^{n-1} \cdot \frac{(1+r)^n-r^n}{r^{n-1}}. Notice that the function f(r)=\frac{(1+r)^n-r^n}{r^{n-1}} is decreasing because the numerator has degree n-1 and all coefficients are positive, so \frac{(1+r)^n-r^n}{r^{n-1}} \lt \frac{(1+r_0)^n-r_0^n}{r_0^{n-1}} = r_0 \big((1+1/r_0)^n-1) = r_0 \lt \frac{n}{\ln2}, so \|A^n\| \lt \frac{n}{\ln2} r^{n-1}. Solution 2. We will use the following facts which are easy to prove:
We will prove a stronger inequality \|A^n\| \leq n \|A\|^{n-1} for any n\times n matrix A whose eigenvalues have absolute value at most 1. We proceed by induction on n. The case n=1 is trivial. Without loss of generality we can assume that the matrix A is upper-triangular. So we have A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ 0 & a_{22} & \cdots & a_{2n}\\ \cdots &\cdots & & \cdots\\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}. Note that the eigenvalues of A are precisely the diagonal entries. We split A as the sum of 3 matrices, A=X+Y+Z as follows: X = \begin{pmatrix} a_{11} & 0 & \cdots & 0\\ 0 & 0 & \cdots & 0\\ \cdots &\cdots & & \cdots\\ 0 & 0 & \cdots & 0 \end{pmatrix},\quad Y = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n}\\ 0 & 0 & \cdots & 0\\ \cdots &\cdots & & \cdots\\ 0 & 0 & \cdots & 0 \end{pmatrix},\quad Z = \begin{pmatrix} 0 & 0 & \cdots & 0\\ 0 & a_{22} & \cdots & a_{2n}\\ \cdots &\cdots & & \cdots\\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}. Denote by A' the matrix obtained from A by removing the first row and the first column: A' = \begin{pmatrix} a_{22} & \cdots & a_{2n}\\ \cdots & & \cdots\\ 0 & \cdots & a_{nn} \end{pmatrix}. We have \|X\|\leq 1 because |a_{11}|\leq 1. We also have \|A'\|=\|Z\|\leq \|Y+Z\| \leq \|A\|. Now we decompose A^n as follows: A^n = X A^{n-1} + (Y+Z) A^{n-1}. We substitute A=X+Y+Z in the second term and expand the parentheses. Because of the following identities: Y^2=0,\quad YX=0,\quad ZY=0,\quad ZX=0 only the terms Y Z^{n-1} and Z^n survive. So we have A^n = X A^{n-1} + (Y+Z) Z^{n-1}. By the induction hypothesis we have \|A'^{n-1}\|\leq (n-1)\|A'\|^{n-2}, hence \|Z^{n-1}\|\leq (n-1)\|Z\|^{n-2}\leq (n-1)\|A\|^{n-2}. Therefore \|A^n\| \leq \|X A^{n-1}\| + \|(Y+Z) Z^{n-1}\| \leq \|A\|^{n-1} + (n-1) \|Y+Z\| \|A\|^{n-2}\leq n \|A\|^{n-1}. | |||||||||
© IMC |