Loading [MathJax]/jax/output/HTML-CSS/jax.js

International Mathematics Competition
for University Students
2023

Select Year:


IMC 2025
Information
  Schedule
  Problems & Solutions
  Results
  Contact
 

IMC2023: Day 2, Problem 10

Problem 10. For every positive integer n, let f(n),g(n) be the minimal positive integers such that

1+11!+12!++1n!=f(n)g(n).

Determine whether there exists a positive integer n for which g(n)>n0.999n.

Fedor Petrov, St. Petersburg State University

    

IMC
2023

© IMC