IMC 2013, Blagoevgrad, Bulgaria

Day 1, August 8, 2013

Problem 1. Let A and B be real symmetric matrices with all eigenvalues strictly greater than 1 . Let λ be a real eigenvalue of matrix $A B$. Prove that $|\lambda|>1$.
(10 points)

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Suppose $f(0)=0$. Prove that there exists $\xi \in(-\pi / 2, \pi / 2)$ such that

$$
f^{\prime \prime}(\xi)=f(\xi)\left(1+2 \tan ^{2} \xi\right) .
$$

Problem 3. There are $2 n$ students in a school $(n \in \mathbb{N}, n \geq 2)$. Each week n students go on a trip. After several trips the following condition was fulfilled: every two students were together on at least one trip. What is the minimum number of trips needed for this to happen?
(10 points)

Problem 4. Let $n \geq 3$ and let x_{1}, \ldots, x_{n} be nonnegative real numbers. Define $A=\sum_{i=1}^{n} x_{i}$, $B=\sum_{i=1}^{n} x_{i}^{2}$ and $C=\sum_{i=1}^{n} x_{i}^{3}$. Prove that

$$
\begin{equation*}
(n+1) A^{2} B+(n-2) B^{2} \geq A^{4}+(2 n-2) A C . \tag{10points}
\end{equation*}
$$

Problem 5. Does there exist a sequence $\left(a_{n}\right)$ of complex numbers such that for every positive integer p we have that $\sum_{n=1}^{\infty} a_{n}^{p}$ converges if and only if p is not a prime?
(10 points)

