International Mathematics Competition for University Students July 25-30 2009, Budapest, Hungary

 Day 2

 Day 2}

Problem 1.

Let ℓ be a line and P a point in \mathbb{R}^{3}. Let S be the set of points X such that the distance from X to ℓ is greater than or equal to two times the distance between X and P. If the distance from P to ℓ is $d>0$, find the volume of S.

Solution. We can choose a coordinate system of the space such that the line ℓ is the z-axis and the point P is $(d, 0,0)$. The distance from the point (x, y, z) to ℓ is $\sqrt{x^{2}+y^{2}}$, while the distance from P to X is $|P X|=$ $\sqrt{(x-d)^{2}+y^{2}+z^{2}}$. Square everything to get rid of the square roots. The condition can be reformulated as follows: the square of the distance from ℓ to X is at least $4|P X|^{2}$.

$$
\begin{gathered}
x^{2}+y^{2} \geq 4\left((x-d)^{2}+y^{2}+z^{2}\right) \\
0 \geq 3 x^{2}-8 d x+4 d^{2}+3 y^{2}+4 z^{2} \\
\left(\frac{16}{3}-4\right) d^{2} \geq 3\left(x-\frac{4}{3} d\right)^{2}+3 y^{2}+4 z^{2}
\end{gathered}
$$

A translation by $\frac{4}{3} d$ in the x-direction does not change the volume, so we get

$$
\begin{gathered}
\frac{4}{3} d^{2} \geq 3 x_{1}^{2}+3 y^{2}+4 z^{2} \\
1 \geq\left(\frac{3 x_{1}}{2 d}\right)^{2}+\left(\frac{3 y}{2 d}\right)^{2}+\left(\frac{\sqrt{3} z}{d}\right)^{2}
\end{gathered}
$$

where $x_{1}=x-\frac{4}{3} d$. This equation defines a solid ellipsoid in canonical form. To compute its volume, perform a linear transformation: we divide x_{1} and y by $\frac{2 d}{3}$ and z by $\frac{d}{\sqrt{3}}$. This changes the volume by the factor $\left(\frac{2 d}{3}\right)^{2} \frac{d}{\sqrt{3}}=\frac{4 d^{3}}{9 \sqrt{3}}$ and turns the ellipsoid into the unit ball of volume $\frac{4}{3} \pi$. So before the transformation the volume was $\frac{4 d^{3}}{9 \sqrt{3}} \cdot \frac{4}{3} \pi=\frac{16 \pi d^{3}}{27 \sqrt{3}}$.

Problem 2.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$, and for all $x \in[0, \infty)$,

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0
$$

Prove that for all $x \in[0, \infty)$,

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}
$$

Solution. We have $f^{\prime \prime}(x)-2 f^{\prime}(x)-3\left(f^{\prime}(x)-2 f(x)\right) \geq 0, x \in[0, \infty)$.
Let $g(x)=f^{\prime}(x)-2 f(x), x \in[0, \infty)$. It follows that

$$
g^{\prime}(x)-3 g(x) \geq 0, x \in[0, \infty)
$$

hence

$$
\left(g(x) e^{-3 x}\right)^{\prime} \geq 0, \quad x \in[0, \infty)
$$

therefore

$$
\begin{gathered}
g(x) e^{-3 x} \geq g(0)=-2, x \in[0, \infty) \text { or equivalently } \\
f^{\prime}(x)-2 f(x) \geq-2 e^{3 x}, x \in[0, \infty)
\end{gathered}
$$

Analogously we get

$$
\begin{aligned}
& \left(f(x) e^{-2 x}\right)^{\prime} \geq-2 e^{x}, x \in[0, \infty) \text { or equivalently } \\
& \quad\left(f(x) e^{-2 x}+2 e^{x}\right)^{\prime} \geq 0, x \in[0, \infty)
\end{aligned}
$$

It follows that

$$
\begin{gathered}
f(x) e^{-2 x}+2 e^{x} \geq f(0)+2=3, x \in[0, \infty) \text { or equivalently } \\
f(x) \geq 3 e^{2 x}-2 e^{3 x}, x \in[0, \infty)
\end{gathered}
$$

Problem 3.

Let $A, B \in M_{n}(\mathbb{C})$ be two $n \times n$ matrices such that

$$
A^{2} B+B A^{2}=2 A B A
$$

Prove that there exists a positive integer k such that $(A B-B A)^{k}=0$.
Solution 1. Let us fix the matrix $A \in M_{n}(\mathbb{C})$. For every matrix $X \in M_{n}(\mathbb{C})$, let $\Delta X:=A X-X A$. We need to prove that the matrix ΔB is nilpotent.

Observe that the condition $A^{2} B+B A^{2}=2 A B A$ is equivalent to

$$
\begin{equation*}
\Delta^{2} B=\Delta(\Delta B)=0 \tag{1}
\end{equation*}
$$

Δ is linear; moreover, it is a derivation, i.e. it satisfies the Leibniz rule:

$$
\Delta(X Y)=(\Delta X) Y+X(\Delta Y), \quad \forall X, Y \in M_{n}(\mathbb{C})
$$

Using induction, one can easily generalize the above formula to k factors:

$$
\begin{equation*}
\Delta\left(X_{1} \cdots X_{k}\right)=\left(\Delta X_{1}\right) X_{2} \cdots X_{k}+\cdots+X_{1} \cdots X_{j-1}\left(\Delta X_{j}\right) X_{j+1} \cdots X_{k}+X_{1} \cdots X_{n-1} \Delta X_{k} \tag{2}
\end{equation*}
$$

for any matrices $X_{1}, X_{2}, \ldots, X_{k} \in M_{n}(\mathbb{C})$. Using the identities (1) and (2) we obtain the equation for $\Delta^{k}\left(B^{k}\right)$:

$$
\begin{equation*}
\Delta^{k}\left(B^{k}\right)=k!(\Delta B)^{k}, \quad \forall k \in \mathbb{N} \tag{3}
\end{equation*}
$$

By the last equation it is enough to show that $\Delta^{n}\left(B^{n}\right)=0$.
To prove this, first we observe that equation (3) together with the fact that $\Delta^{2} B=0$ implies that $\Delta^{k+1} B^{k}=0$, for every $k \in \mathbb{N}$. Hence, we have

$$
\begin{equation*}
\Delta^{k}\left(B^{j}\right)=0, \quad \forall k, j \in \mathbb{N}, j<k \tag{4}
\end{equation*}
$$

By the Cayley-Hamilton Theorem, there are scalars $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{C}$ such that

$$
B^{n}=\alpha_{0} I+\alpha_{1} B+\cdots+\alpha_{n-1} B^{n-1}
$$

which together with (4) implies that $\Delta^{n} B^{n}=0$.
Solution 2. Set $X=A B-B A$. The matrix X commutes with A because

$$
A X-X A=\left(A^{2} B-A B A\right)-\left(A B A-B A^{2}\right)=A^{2} B+B A^{2}-2 A B A=0
$$

Hence for any $m \geq 0$ we have

$$
X^{m+1}=X^{m}(A B-B A)=A X^{m} B-X^{m} B A
$$

Take the trace of both sides:

$$
\operatorname{tr} X^{m+1}=\operatorname{tr} A\left(X^{m} B\right)-\operatorname{tr}\left(X^{m} B\right) A=0
$$

(since for any matrices U and V, we have $\operatorname{tr} U V=\operatorname{tr} V U$). As $\operatorname{tr} X^{m+1}$ is the sum of the $m+1$-st powers of the eigenvalues of X, the values of $\operatorname{tr} X, \ldots, \operatorname{tr} X^{n}$ determine the eigenvalues of X uniquely, therefore all of these eigenvalues have to be 0 . This implies that X is nilpotent.

Problem 4.

Let p be a prime number and \mathbb{F}_{p} be the field of residues modulo p. Let W be the smallest set of polynomials with coefficients in \mathbb{F}_{p} such that

- the polynomials $x+1$ and $x^{p-2}+x^{p-3}+\cdots+x^{2}+2 x+1$ are in W, and
- for any polynomials $h_{1}(x)$ and $h_{2}(x)$ in W the polynomial $r(x)$, which is the remainder of $h_{1}\left(h_{2}(x)\right)$ modulo $x^{p}-x$, is also in W.

How many polynomials are there in W ?

Solution. Note that both of our polynomials are bijective functions on $\mathbb{F}_{p}: f_{1}(x)=x+1$ is the cycle $0 \rightarrow 1 \rightarrow$ $2 \rightarrow \cdots \rightarrow(p-1) \rightarrow 0$ and $f_{2}(x)=x^{p-2}+x^{p-3}+\cdots+x^{2}+2 x+1$ is the transposition $0 \leftrightarrow 1$ (this follows from the formula $f_{2}(x)=\frac{x^{p-1}-1}{x-1}+x$ and Fermat's little theorem). So any composition formed from them is also a bijection, and reduction modulo $x^{p}-x$ does not change the evaluation in \mathbb{F}_{p}. Also note that the transposition and the cycle generate the symmetric group ($f_{1}^{k} \circ f_{2} \circ f_{1}^{p-k}$ is the transposition $k \leftrightarrow(k+1)$, and transpositions of consecutive elements clearly generate S_{p}), so we get all p ! permutations of the elements of \mathbb{F}_{p}.

The set W only contains polynomials of degree at most $p-1$. This means that two distinct elements of W cannot represent the same permutation. So W must contain those polynomials of degree at most $p-1$ which permute the elements of \mathbb{F}_{p}. By minimality, W has exactly these p ! elements.

Problem 5.

Let \mathbb{M} be the vector space of $m \times p$ real matrices. For a vector subspace $S \subseteq \mathbb{M}$, denote by $\delta(S)$ the dimension of the vector space generated by all columns of all matrices in S.

Say that a vector subspace $T \subseteq \mathbb{M}$ is a covering matrix space if

$$
\bigcup_{A \in T, A \neq 0} \operatorname{ker} A=\mathbb{R}^{p} .
$$

Such a T is minimal if it does not contain a proper vector subspace $S \subset T$ which is also a covering matrix space.
(a) (8 points) Let T be a minimal covering matrix space and let $n=\operatorname{dim} T$. Prove that

$$
\delta(T) \leq\binom{ n}{2}
$$

(b) (2 points) Prove that for every positive integer n we can find m and p, and a minimal covering matrix space T as above such that $\operatorname{dim} T=n$ and $\delta(T)=\binom{n}{2}$.
Solution 1. (a) We will prove the claim by constructing a suitable decomposition $T=Z_{0} \oplus Z_{1} \oplus \cdots$ and a corresponding decomposition of the space spanned by all columns of T as $W_{0} \oplus W_{1} \oplus \cdots$, such that dim $W_{0} \leqslant n-1$, $\operatorname{dim} W_{1} \leqslant n-2$, etc., from which the bound follows.

We first claim that, in every covering matrix space S, we can find an $A \in S$ with $\operatorname{rk} A \leqslant \operatorname{dim} S-1$. Indeed, let $S_{0} \subseteq S$ be some minimal covering matrix space. Let $s=\operatorname{dim} S_{0}$ and fix some subspace $S^{\prime} \subset S_{0}$ of dimension $s-1$. S^{\prime} is not covering by minimality of S_{0}, so that we can find an $u \in \mathbb{R}^{p}$ with $u \notin \cup_{B \in S^{\prime}, B \neq 0} \operatorname{Ker} B$. Let $V=S^{\prime}(u)$; by the rank-nullity theorem, $\operatorname{dim} V=s-1$. On the other hand, as S_{0} is covering, we have that $A u=0$ for some $A \in S_{0} \backslash S^{\prime}$. We claim that $\operatorname{Im} A \subset V$ (and therefore $\left.\operatorname{rk}(A) \leqslant s-1\right)$.

For suppose that $A v \notin V$ for some $v \in \mathbb{R}^{p}$. For every $\alpha \in \mathbb{R}$, consider the map $f_{\alpha}: S_{0} \rightarrow \mathbb{R}^{m}$ defined by $f_{\alpha}:(\tau+\beta A) \mapsto \tau(u+\alpha v)+\beta A v, \tau \in S^{\prime}, \beta \in \mathbb{R}$. Note that f_{0} is of rank $s=\operatorname{dim} S_{0}$ by our assumption, so that some $s \times s$ minor of the matrix of f_{0} is non-zero. The corresponding minor of f_{α} is thus a nonzero polynomial of α, so that it follows that $\operatorname{rk} f_{\alpha}=s$ for all but finitely many α. For such an $\alpha \neq 0$, we have that $\operatorname{Ker} f_{\alpha}=\{0\}$ and thus

$$
0 \neq \tau(u+\alpha v)+\beta A v=\left(\tau+\alpha^{-1} \beta A\right)(u+\alpha v)
$$

for all $\tau \in S^{\prime}, \beta \in \mathbb{R}$ not both zero, so that $B(u+\alpha v) \neq 0$ for all nonzero $B \in S_{0}$, a contradiction.
Let now T be a minimal covering matrix space, and $\operatorname{write} \operatorname{dim} T=n$. We have shown that we can find an $A \in T$ such that $W_{0}=\operatorname{Im} A$ satisfies $w_{0}=\operatorname{dim} W_{0} \leqslant n-1$. Denote $Z_{0}=\left\{B \in T: \operatorname{Im} B \subset W_{0}\right\}$; we know that $t_{0}=\operatorname{dim} Z_{0} \geqslant 1$. If $T=Z_{0}$, then $\delta(T) \leqslant n-1$ and we are done. Else, write $T=Z_{0} \oplus T_{1}$, also write $\mathbb{R}^{m}=W_{0} \oplus V_{1}$ and let $\pi_{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the projection onto the V_{1}-component. We claim that

$$
T_{1}^{\sharp}=\left\{\pi_{1} \tau_{1}: \tau_{1} \in T_{1}\right\}
$$

is also a covering matrix space. Note here that $\pi_{1}^{\sharp}: T_{1} \rightarrow T_{1}^{\sharp}, \tau_{1} \mapsto\left(\pi_{1} \tau_{1}\right)$ is an isomorphism. In particular we note that $\delta(T)=w_{0}+\delta\left(T_{1}^{\sharp}\right)$.

Suppose that T_{1}^{\sharp} is not a covering matrix space, so we can find a $v_{1} \in \mathbb{R}^{p}$ with $v_{1} \notin \cup_{\tau_{1} \in T_{1}, \tau_{1} \neq 0} \operatorname{Ker}\left(\pi_{1} \tau_{1}\right)$. On the other hand, by minimality of T we can find a $u_{1} \in \mathbb{R}^{p}$ with $u_{1} \notin \cup_{\tau_{0} \in Z_{0}, \tau_{0} \neq 0} \operatorname{Ker} \tau_{0}$. The maps $g_{\alpha}: Z_{0} \rightarrow V$,
$\tau_{0} \mapsto \tau_{0}\left(u_{1}+\alpha v_{1}\right)$ and $h_{\beta}: T_{1} \rightarrow V_{1}, \tau_{1} \mapsto \pi_{1}\left(\tau_{1}\left(v_{1}+\beta u_{1}\right)\right)$ have $\mathrm{rk} g_{0}=t_{0}$ and $\mathrm{rk} h_{0}=n-t_{0}$ and thus both $\operatorname{rk} g_{\alpha}=t_{0}$ and $\operatorname{rk} h_{\alpha^{-1}}=n-t_{0}$ for all but finitely many $\alpha \neq 0$ by the same argument as above. Pick such an α and suppose that

$$
\left(\tau_{0}+\tau_{1}\right)\left(u_{1}+\alpha v_{1}\right)=0
$$

for some $\tau_{0} \in Z_{0}, \tau_{1} \in T_{1}$. Applying π_{1} to both sides we see that we can only have $\tau_{1}=0$, and then $\tau_{0}=0$ as well, a contradiction given that T is a covering matrix space.

In fact, the exact same proof shows that, in general, if T is a minimal covering matrix space, $\mathbb{R}^{m}=V_{0} \oplus V_{1}$, $T_{0}=\left\{\tau \in T: \operatorname{Im} \tau \subset V_{0}\right\}, T=T_{0} \oplus T_{1}, \pi_{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the projection onto the V_{1}-component, and $T_{1}^{\sharp}=\left\{\pi_{1} \tau_{1}: \tau_{1} \in T_{1}\right\}$, then T_{1}^{\sharp} is a covering matrix space.

We can now repeat the process. We choose a $\pi_{1} A_{1} \in T_{1}^{\sharp}$ such that $W_{1}=\left(\pi_{1} A_{1}\right)\left(\mathbb{R}^{p}\right)$ has $w_{1}=\operatorname{dim} W_{1} \leqslant$ $n-t_{0}-1 \leqslant n-2$. We write $Z_{1}=\left\{\tau_{1} \in T_{1}: \operatorname{Im}\left(\pi_{1} \tau_{1}\right) \subset W_{1}\right\}, T_{1}=Z_{1} \oplus T_{2}\left(\right.$ and so $\left.T=\left(Z_{0} \oplus Z_{1}\right) \oplus T_{2}\right)$, $t_{1}=\operatorname{dim} Z_{1} \geqslant 1, V_{1}=W_{1} \oplus V_{2}$ (and so $\left.\mathbb{R}^{m}=\left(W_{0} \oplus W_{1}\right) \oplus V_{2}\right), \pi_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the projection onto the V_{2}-component, and $T_{2}^{\sharp}=\left\{\pi_{2} \tau_{2}: \tau_{2} \in T_{2}\right\}$, so that T_{2}^{\sharp} is also a covering matrix space, etc.

We conclude that

$$
\begin{aligned}
\delta(T) & =w_{0}+\delta\left(T_{1}\right)=w_{0}+w_{1}+\delta\left(T_{2}\right)=\cdots \\
& \leqslant(n-1)+(n-2)+\cdots \leqslant\binom{ n}{2} .
\end{aligned}
$$

(b) We consider $\binom{n}{2} \times n$ matrices whose rows are indexed by $\binom{n}{2}$ pairs (i, j) of integers $1 \leqslant i<j \leqslant n$. For every $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$, consider the matrix $A(u)$ whose entries $A(u)_{(i, j), k}$ with $1 \leqslant i<j \leqslant n$ and $1 \leqslant k \leqslant n$ are given by

$$
(A(u))_{(i, j), k}=\left\{\begin{aligned}
u_{i}, & k=j \\
-u_{j}, & k=i, \\
0, & \text { otherwise }
\end{aligned}\right.
$$

It is immediate that $\operatorname{Ker} A(u)=\mathbb{R} \cdot u$ for every $u \neq 0$, so that $S=\left\{A(u): u \in \mathbb{R}^{n}\right\}$ is a covering matrix space, and in fact a minimal one.

On the other hand, for any $1 \leqslant i<j \leqslant n$, we have that $A\left(e_{i}\right)_{(i, j), j}$ is the $(i, j)^{\text {th }}$ vector in the standard basis of $\mathbb{R}^{\binom{n}{2}}$, where e_{i} denotes the $i^{\text {th }}$ vector in the standard basis of \mathbb{R}^{n}. This means that $\delta(S)=\binom{n}{2}$, as required.
Solution 2. (for part a)
Let us denote $X=\mathbb{R}^{p}, Y=\mathbb{R}^{m}$. For each $x \in X$, denote by $\mu_{x}: T \rightarrow Y$ the evaluation map $\tau \mapsto \tau(x)$. As T is a covering matrix space, $\operatorname{ker} \mu_{x}>0$ for every $x \in X$. Let $U=\left\{x \in X: \operatorname{dim} \operatorname{ker} \mu_{x}=1\right\}$.

Let T_{1} be the span of the family of subspaces $\left\{\operatorname{ker} \mu_{x}: x \in U\right\}$. We claim that $T_{1}=T$. For suppose the contrary, and let $T^{\prime} \subset T$ be a subspace of T of dimension $n-1$ such that $T_{1} \subseteq T^{\prime}$. This implies that T^{\prime} is a covering matrix space. Indeed, for $x \in U$, $\left(\operatorname{ker} \mu_{x}\right) \cap T^{\prime}=\operatorname{ker} \mu_{x} \neq 0$, while for $x \notin U$ we have $\operatorname{dim} \mu_{x} \geq 2$, so that $\left(\operatorname{ker} \mu_{x}\right) \cap T^{\prime} \neq 0$ by computing dimensions. However, this is a contradiction as T is minimal.

Now we may choose $x_{1}, x_{2}, \ldots, x_{n} \in U$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{n} \in T$ in such a way that ker $\mu_{x_{i}}=\mathbb{R} \tau_{i}$ and τ_{i} form a basis of T. Let us complete x_{1}, \ldots, x_{n} to a sequence x_{1}, \ldots, x_{d} which spans X. Put $y_{i j}=\tau_{i}\left(x_{j}\right)$. It is clear that $y_{i j}$ span the vector space generated by the columns of all matrices in T. We claim that the subset $\left\{y_{i j}: i>j\right\}$ is enough to span this space, which clearly implies that $\delta(T) \leqslant\binom{ n}{2}$.

We have $y_{i i}=0$. So it is enough to show that every $y_{i j}$ with $i<j$ can be expressed as a linear combination of $y_{k i}, k=1, \ldots, n$. This follows from the following lemma:
Lemma. For every $x_{0} \in U, 0 \neq \tau_{0} \in \operatorname{ker} \mu_{x_{0}}$ and $x \in X$, there exists a $\tau \in T$ such that $\tau_{0}(x)=\tau\left(x_{0}\right)$.
Proof. The operator $\mu_{x_{0}}$ has rank $n-1$, which implies that for small ε the operator $\mu_{x_{0}+\varepsilon x}$ also has rank $n-1$. Therefore one can produce a rational function $\tau(\varepsilon)$ with values in T such that $m_{x_{0}+\varepsilon x}(\tau(\varepsilon))=0$. Taking the derivative at $\varepsilon=0$ gives $\mu_{x_{0}}\left(\tau_{0}\right)+\mu_{x}\left(\tau^{\prime}(0)\right)=0$. Therefore $\tau=-\tau^{\prime}(0)$ satisfies the desired property.

Remark. Lemma in solution 2 is the same as the claim $\operatorname{Im} A \subset V$ at the beginning of solution 1, but the proof given here is different. It can be shown that all minimal covering spaces T with $\operatorname{dim} T=\binom{n}{2}$ are essentially the ones described in our example.

