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Day 1

Problem 1.
Suppose that f and g are real-valued functions on the real line and f(r) < g(r) for every rational r. Does this
imply that f(z) < g(z) for every real z if

a) f and g are non-decreasing?

b) f and g are continuous?

Solution. a) No. Counter-example: f and g can be chosen as the characteristic functions of [v/3, 00) and (v/3, c0),
respectively.

b) Yes. By the assumptions g — f is continuous on the whole real line and nonnegative on the rationals. Since
any real number can be obtained as a limit of rational numbers we get that ¢ — f is nonnegative on the whole real
line.

Problem 2.
Let A, B and C' be real square matrices of the same size, and suppose that A is invertible. Prove that if (A—B)C =
BA~! then C(A— B) = A"'B.

Solution. A straightforward calculation shows that (A— B)C = BA~! is equivalent to AC—BC—~BA '+ AA™1 =
I, where I denotes the identity matrix. This is equivalent to (A— B)(C'+A™1) = I. Hence, (A—B)™' =C+ A},
meaning that (C' + A~1)(A — B) = I also holds. Expansion yields the desired result.

Problem 3.

In a town every two residents who are not friends have a friend in common, and no one is a friend of everyone else.
Let us number the residents from 1 to n and let a; be the number of friends of the i-th resident. Suppose that
S a? =n? —n. Let k be the smallest number of residents (at least three) who can be seated at a round table
in such a way that any two neighbors are friends. Determine all possible values of k.

Solution. Let us define the simple, undirected graph G so that the vertices of G are the town’s residents and the
edges of G are the friendships between the residents. Let V(G) = {v1,v2,...,v,} denote the vertices of G; a; is
degree of v; for every i. Let E(G) denote the edges of G. In this terminology, the problem asks us to describe the
length £ of the shortest cycle in G.

Let us count the walks of length 2 in G, that is, the ordered triples (v;, v;, v;) of vertices with v;vj, vju; € E(G)
(i = [ being allowed). For a given j the number is obviously a?, therefore the total number is >, a? =n?—n.

Now we show that there is an injection f from the set of ordered pairs of distinct vertices to the set of these
walks. For viv; & E(G), let f(vi,vj) = (v;, vy, v5) with arbitrary [ such that v;vu;, vv; € E(G). For viv; € E(G), let
f(vi,v;) = (vi,v5,v;). fis an injection since for ¢ # [, (v;,vj,v;) can only be the image of (v;,v;), and for i = [, it
can only be the image of (v;, v;).

Since the number of ordered pairs of distinct vertices is n? — n, S a? > n? —n. Equality holds iff f is
surjective, that is, iff there is exactly one [ with v;v;, vjv; € E(G) for every i, j with v;v; ¢ E(G) and there is no
such [ for any i, j with v;v; € E(G). In other words, iff G contains neither C3 nor Cy (cycles of length 3 or 4), that
is, G is either a forest (a cycle-free graph) or the length of its shortest cycle is at least 5.

It is easy to check that if every two vertices of a forest are connected by a path of length at most 2, then the
forest is a star (one vertex is connected to all others by an edge). But G has n vertices, and none of them has
degree n — 1. Hence G is not forest, so it has cycles. On the other hand, if the length of a cycle C' of G is at
least 6 then it has two vertices such that both arcs of C' connecting them are longer than 2. Hence there is a path
connecting them that is shorter than both arcs. Replacing one of the arcs by this path, we have a closed walk
shorter than C. Therefore length of the shortest cycle is 5.

Finally, we must note that there is at least one G with the prescribed properties — e.g. the cycle C5 itself
satisfies the conditions. Thus 5 is the sole possible value of k.



Problem 4.
Let p(z) = ag + a1z + a2z + - - - + a,2" be a complex polynomial. Suppose that 1 =cq>¢; >--->¢, > 0is a
sequence of real numbers which is convex (i.e. 2¢c; < ¢x_1 + cxy1 for every k = 1,2,...,n — 1), and consider the
polynomial

q(2) = coap + c1a12 + c2a92° + -+ - + cpan 2",

Prove that

< .
max q(2)| < e p(2)|

Solution. The polynomials p and g are regular on the complex plane, so by the Maximum Principle, max|.|<; lg(2)| =
max|,|—; |¢(2)|, and similarly for p. Let us denote My = max,|—; |f(2)| for any regular function f. Thus it suffices
to prove that M, < M,,.

First, note that we can assume ¢, = 0. Indeed, for ¢, = 1 we get p = ¢ and the statement is trivial; otherwise,
q(2) = cap(2) + (1 — ¢)r(2), where 7(z) = >0, cf:f: a;z’. The sequence ;= cljfcc" also satisfies the prescribed
conditions (it is a positive linear transform of the sequence ¢, with ¢ = 1), but ¢, = 0 too, so we get M, < M),
This is enough: M, = |q(20)| < en|p(20)] + (1 — )| (20)] < enMp + (1 — ¢) M, < M,,.

Using the Cauchy formulas, we can express the coefficients a; of p from its Values taken over the positively

oriented circle S = {|]z| = 1}:
a':L p(z)dz:i/ ()|d|
T omi Jg 20Tt 21 Jg 27

/ ZLj)|dz| =0.
g Z

Let us use these identities to get a new formula for g, using only the values of p over S:

2m - q(w) = Zn:Cj (/SP(Z)Zj!dZD w’

J=0

for 0 < j < n, otherwise

We can exchange the order of the summation and the integration (sufficient conditions to do this obviously apply):

2 - g(w / ch (w2 | p(2))dz].

It would be nice if the integration kernel (the sum between the brackets) was real. But this is easily arranged — for
—n < 7 < —1, we can add the conjugate expressions, because by the above remarks, they are zero anyway:

n n

2 a(w) = 3¢ ([ o)) wl = 3 e ([ o)zl )

j=0 j=—n

n

2m - q(w) = Y eyw/2) | p(2)ldz] = | K(w/2)p(2)ldz],
S S

j=—n

where
n

K(u) = Z cmuj =co+ QchSR(uj)

jzfn j=1

foru e S.
Let us examine K (u). It is a real-valued function. Again from the Cauchy formulas, [¢ K (u)|du| = 2m¢o = 27.
If [¢|K (u)||du| = 27 still holds (taking the absolute value does not increase the integral), then for every w:

Irlg(w)) = 1 [ Ko

< [1KG/2)]- bl < My /S [ (w)du| = 27

this would conclude the proof. So it suffices to prove that [¢|K(u)||du| = [¢ K(u)|du|, which is to say, K is
non-negative.
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Now let us decompose K into a sum using the given conditions for the numbers ¢; (including ¢, = 0). Let
dp = cp—1 —2c + cpqq for k= 1,... n (setting cp41 = 0); we know that dj, > 0. Let Fi(u) = Z?;ikﬂ(kz — i)
Then K(u) = Y ,_, dpFj(u) by easy induction (or see Figure for a graphical illustration). So it suffices to prove
that Fy(u) is real and Fj(u) > 0 for u € S. This is reasonably well-known (as % is the Fejér kernel), and also very
easy:
Fow)=(0+u+u’+ - +u" A +u " +u 2+ 4o )=

=(l4+ut+u?+ -+ A +ut+u+ - ub ) = T+ut+u? a2 >0
This completes the proof.

Problem 5.
Let n be a positive integer. An n-simplex in R™ is given by n + 1 points Py, Py, ..., Py, called its vertices, which
do not all belong to the same hyperplane. For every n-simplex S we denote by v(S) the volume of S, and we write
C(S) for the center of the unique sphere containing all the vertices of S.

Suppose that P is a point inside an n-simplex S. Let S; be the n-simplex obtained from S by replacing its ¢-th
vertex by P. Prove that

0(S0)C/(So) + v(S1)C(S1) + - -+ + v(Sn)C(Sp) = v(S)C(S).

Solution 1. We will prove this by induction on n, starting with n = 1. In that case we are given an interval [a, b]
with a point p € (a,b), and we have to verify

b+p

b=p)——+(—a)

pta b+a
9 _(b a) 9 )

which is true.
Now let assume the result is true for n — 1 and prove it for n. We have to show that the point

" v(S))

X = 120(S;
Z v(S) ()
7=0

has the same distance to all the points Py, Pj,...,P,. Let i« € {0,1,2,...,n} and define the sets

M; = {Py,P1,...,P,_1,Pi+1,...,P,}. The set of all points having the same distance to all points in M; is a

line h; orthogonal to the hyperplane F; determined by the points in M;. We are going to show that X lies on every

h;. To do so, fix some index 7 and notice that

_ () ey, 00S) —v(S) v(S;) A
X_U(S)O(SZ)+ o) -ZU ZO(S])

and O(S;) lies on h;, so that it is enough to show that Y lies on h;.

A map f: Ryg — R” will be called affine if there are points A, B € R™ such that f(A\) = AMA + (1 — \)B.
Consider the ray g starting in P; and passing through P. For A > 0 let Py, = (1 — A)P + AP, so that Py is an
affine function describing the points of g. For every such A let S])f be the n-simplex obtained from S by replacing
the j-th vertex by Py. The point O(S;‘) is the intersection of the fixed line h; with the hyperplane orthogonal to
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g and passing through the midpoint of the segment P; P\ which is given by an affine function. This implies that

also O(S])»‘) is an affine function. We write ¢; = %, and then

Y= Z 0;0(57)
J#i
is an affine function. We want to show that Yy € h; for all A (then specializing to A = 1 gives the desired result).
It is enough to do this for two different values of .

Let g intersect the sphere containing the vertices of S in a point Z; then Z = P, for a suitable A > 0, and we
have O(S])»‘) = O(S) for all j, so that Y\ = O(S) € h;. Now let g intersect the hyperplane E; in a point @Q; then
Q@ = P, for some A > 0, and @ is different from Z. Define T' to be the (n — 1)-simplex with vertex set M;, and
let T; be the (n — 1)-simplex obtained from 7' by replacing the vertex P; by Q. If we write v for the volume of
(n — 1)-simplices in the hyperplane E;, then

V(1) _ U(S]‘A) _ U(S]‘A)
v'(T) v(S) Zk;ﬁi U(Sﬁ)
Av(S;) v(S;)

T (S oS) —o(S)

If p denotes the orthogonal projection onto F; then p(O(SjA)) = O(Tj), so that p(Yx) = >_,; »;O(T}) equals O(T)
by induction hypothesis, which implies Y € p~1(O(T)) = h;, and we are done.

Solution 2. For n =1, the statement is checked easily.
Assume n > 2. Denote O(S;) — O(S) by ¢; and P; — P by p;. For all distinct j and k in the range 0, ...,n the
point O(S;) lies on a hyperplane orthogonal to py and P; lies on a hyperplane orthogonal to g;. So we have

(pisqj —ar) =0

(¢i,pj —p) =0
for all j # i # k. This means that the value (p;,q;) is independent of j as long as j # 4, denote this value by A;.
Similarly, (g;,p;) = p; for some p;. Since n > 2, these equalities imply that all the A\; and p; values are equal, in

particular, (p;, qj) = (pj, ;) for any i and j.
We claim that for such p; and ¢;, the volumes

V= | det(po, wsPj—1,Pj+1, ey Pn)|

and
Wj = | det(qo, vy Q51545415 -0y Qn)|

are proportional. Indeed, first assume that pg, ..., p,—1 and qq, ..., ¢n—1 are bases of R"™, then we have

1
V= det (P, @1)) ) kzj| =
= Taettao, gy |0 (Pr ) )iy
1 det(p(]a"'apnfl)
= det(((pr> @1))) 15 | = Wj.
[dotla, )] |- PR @) 1 1= |G g |

If our assumption did not hold after any reindexing of the vectors p; and ¢;, then both p; and ¢; span a subspace
of dimension at most n — 1 and all the volumes are 0.

Finally, it is clear that ) ¢;W;/det(qo, ..., qn) = 0: the weight of p; is the height of 0 over the hyperplane
spanned by the rest of the vectors g, relative to the height of p; over the same hyperplane, so the sum is parallel
to all the faces of the simplex spanned by qq,...,¢,. By the argument above, we can change the weights to the
proportional set of weights V;/ det(po, ..., pn) and the sum will still be 0. That is,

V. .
0= ZQjcie‘g(p—J =Y (0(S)) = O(9)) o(8)

05+ Pn)

= ﬁ (Z O(8;)v(S5) — O(9) Zv(sj)) =3O (Z O(8;)v(S;) — O(S)v(S)) ,




