International Mathematics Competition for University Students July 25-30 2009, Budapest, Hungary

Day 1

Problem 1.

Suppose that f and g are real-valued functions on the real line and $f(r) \leq g(r)$ for every rational r. Does this imply that $f(x) \leq g(x)$ for every real x if
a) f and g are non-decreasing?
b) f and g are continuous?

Solution. a) No. Counter-example: f and g can be chosen as the characteristic functions of $[\sqrt{3}, \infty)$ and $(\sqrt{3}, \infty)$, respectively.
b) Yes. By the assumptions $g-f$ is continuous on the whole real line and nonnegative on the rationals. Since any real number can be obtained as a limit of rational numbers we get that $g-f$ is nonnegative on the whole real line.

Problem 2.

Let A, B and C be real square matrices of the same size, and suppose that A is invertible. Prove that if $(A-B) C=$ $B A^{-1}$, then $C(A-B)=A^{-1} B$.
Solution. A straightforward calculation shows that $(A-B) C=B A^{-1}$ is equivalent to $A C-B C-B A^{-1}+A A^{-1}=$ I, where I denotes the identity matrix. This is equivalent to $(A-B)\left(C+A^{-1}\right)=I$. Hence, $(A-B)^{-1}=C+A^{-1}$, meaning that $\left(C+A^{-1}\right)(A-B)=I$ also holds. Expansion yields the desired result.

Problem 3.

In a town every two residents who are not friends have a friend in common, and no one is a friend of everyone else. Let us number the residents from 1 to n and let a_{i} be the number of friends of the i-th resident. Suppose that $\sum_{i=1}^{n} a_{i}^{2}=n^{2}-n$. Let k be the smallest number of residents (at least three) who can be seated at a round table in such a way that any two neighbors are friends. Determine all possible values of k.

Solution. Let us define the simple, undirected graph G so that the vertices of G are the town's residents and the edges of G are the friendships between the residents. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ denote the vertices of G; a_{i} is degree of v_{i} for every i. Let $E(G)$ denote the edges of G. In this terminology, the problem asks us to describe the length k of the shortest cycle in G.

Let us count the walks of length 2 in G, that is, the ordered triples $\left(v_{i}, v_{j}, v_{l}\right)$ of vertices with $v_{i} v_{j}, v_{j} v_{l} \in E(G)$ ($i=l$ being allowed). For a given j the number is obviously a_{j}^{2}, therefore the total number is $\sum_{i=1}^{n} a_{i}^{2}=n^{2}-n$.

Now we show that there is an injection f from the set of ordered pairs of distinct vertices to the set of these walks. For $v_{i} v_{j} \notin E(G)$, let $f\left(v_{i}, v_{j}\right)=\left(v_{i}, v_{l}, v_{j}\right)$ with arbitrary l such that $v_{i} v_{l}, v_{l} v_{j} \in E(G)$. For $v_{i} v_{j} \in E(G)$, let $f\left(v_{i}, v_{j}\right)=\left(v_{i}, v_{j}, v_{i}\right)$. f is an injection since for $i \neq l,\left(v_{i}, v_{j}, v_{l}\right)$ can only be the image of $\left(v_{i}, v_{l}\right)$, and for $i=l$, it can only be the image of $\left(v_{i}, v_{j}\right)$.

Since the number of ordered pairs of distinct vertices is $n^{2}-n, \sum_{i=1}^{n} a_{i}^{2} \geq n^{2}-n$. Equality holds iff f is surjective, that is, iff there is exactly one l with $v_{i} v_{l}, v_{l} v_{j} \in E(G)$ for every i, j with $v_{i} v_{j} \notin E(G)$ and there is no such l for any i, j with $v_{i} v_{j} \in E(G)$. In other words, iff G contains neither C_{3} nor C_{4} (cycles of length 3 or 4), that is, G is either a forest (a cycle-free graph) or the length of its shortest cycle is at least 5 .

It is easy to check that if every two vertices of a forest are connected by a path of length at most 2 , then the forest is a star (one vertex is connected to all others by an edge). But G has n vertices, and none of them has degree $n-1$. Hence G is not forest, so it has cycles. On the other hand, if the length of a cycle C of G is at least 6 then it has two vertices such that both arcs of C connecting them are longer than 2 . Hence there is a path connecting them that is shorter than both arcs. Replacing one of the arcs by this path, we have a closed walk shorter than C. Therefore length of the shortest cycle is 5 .

Finally, we must note that there is at least one G with the prescribed properties - e.g. the cycle C_{5} itself satisfies the conditions. Thus 5 is the sole possible value of k.

Problem 4.

Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a complex polynomial. Suppose that $1=c_{0} \geq c_{1} \geq \cdots \geq c_{n} \geq 0$ is a sequence of real numbers which is convex (i.e. $2 c_{k} \leq c_{k-1}+c_{k+1}$ for every $k=1,2, \ldots, n-1$), and consider the polynomial

$$
q(z)=c_{0} a_{0}+c_{1} a_{1} z+c_{2} a_{2} z^{2}+\cdots+c_{n} a_{n} z^{n}
$$

Prove that

$$
\max _{|z| \leq 1}|q(z)| \leq \max _{|z| \leq 1}|p(z)|
$$

Solution. The polynomials p and q are regular on the complex plane, so by the Maximum Principle, $\max _{|z| \leq 1}|q(z)|=$ $\max _{|z|=1}|q(z)|$, and similarly for p. Let us denote $M_{f}=\max _{|z|=1}|f(z)|$ for any regular function f. Thus it suffices to prove that $M_{q} \leq M_{p}$.

First, note that we can assume $c_{n}=0$. Indeed, for $c_{n}=1$, we get $p=q$ and the statement is trivial; otherwise, $q(z)=c_{n} p(z)+\left(1-c_{n}\right) r(z)$, where $r(z)=\sum_{j=0}^{n} \frac{c_{j}-c_{n}}{1-c_{n}} a_{j} z^{j}$. The sequence $c_{j}^{\prime}=\frac{c_{j}-c_{n}}{1-c_{n}}$ also satisfies the prescribed conditions (it is a positive linear transform of the sequence c_{n} with $c_{0}^{\prime}=1$), but $c_{n}^{\prime}=0$ too, so we get $M_{r} \leq M_{p}$. This is enough: $M_{q}=\left|q\left(z_{0}\right)\right| \leq c_{n}\left|p\left(z_{0}\right)\right|+\left(1-c_{n}\right)\left|r\left(z_{0}\right)\right| \leq c_{n} M_{p}+\left(1-c_{n}\right) M_{r} \leq M_{p}$.

Using the Cauchy formulas, we can express the coefficients a_{j} of p from its values taken over the positively oriented circle $S=\{|z|=1\}$:

$$
a_{j}=\frac{1}{2 \pi i} \int_{S} \frac{p(z)}{z^{j+1}} \mathrm{~d} z=\frac{1}{2 \pi} \int_{S} \frac{p(z)}{z^{j}}|d z|
$$

for $0 \leq j \leq n$, otherwise

$$
\int_{S} \frac{p(z)}{z^{j}}|d z|=0
$$

Let us use these identities to get a new formula for q, using only the values of p over S :

$$
2 \pi \cdot q(w)=\sum_{j=0}^{n} c_{j}\left(\int_{S} p(z) z^{-j}|d z|\right) w^{j}
$$

We can exchange the order of the summation and the integration (sufficient conditions to do this obviously apply):

$$
2 \pi \cdot q(w)=\int_{S}\left(\sum_{j=0}^{n} c_{j}(w / z)^{j}\right) p(z)|d z|
$$

It would be nice if the integration kernel (the sum between the brackets) was real. But this is easily arranged - for $-n \leq j \leq-1$, we can add the conjugate expressions, because by the above remarks, they are zero anyway:

$$
\begin{gathered}
2 \pi \cdot q(w)=\sum_{j=0}^{n} c_{j}\left(\int_{S} p(z) z^{-j}|d z|\right) w^{j}=\sum_{j=-n}^{n} c_{|j|}\left(\int_{S} p(z) z^{-j}|d z|\right) w^{j} \\
2 \pi \cdot q(w)=\int_{S}\left(\sum_{j=-n}^{n} c_{|j|}(w / z)^{j}\right) p(z)|d z|=\int_{S} K(w / z) p(z)|d z|
\end{gathered}
$$

where

$$
K(u)=\sum_{j=-n}^{n} c_{|j|} u^{j}=c_{0}+2 \sum_{j=1}^{n} c_{j} \mathfrak{\Re}\left(u^{j}\right)
$$

for $u \in S$.
Let us examine $K(u)$. It is a real-valued function. Again from the Cauchy formulas, $\int_{S} K(u)|\mathrm{d} u|=2 \pi c_{0}=2 \pi$. If $\int_{S}|K(u)||\mathrm{d} u|=2 \pi$ still holds (taking the absolute value does not increase the integral), then for every w :

$$
2 \pi|q(w)|=\left|\int_{S} K(w / z) p(z)\right| d z| | \leq \int_{S}|K(w / z)| \cdot\left|p(z)\left\|d z\left|\leq M_{p} \int_{S}\right| K(u)\right\| d u\right|=2 \pi M_{p}
$$

this would conclude the proof. So it suffices to prove that $\int_{S}|K(u)||\mathrm{d} u|=\int_{S} K(u)|\mathrm{d} u|$, which is to say, K is non-negative.

Now let us decompose K into a sum using the given conditions for the numbers c_{j} (including $c_{n}=0$). Let $d_{k}=c_{k-1}-2 c_{k}+c_{k+1}$ for $k=1, \ldots, n$ (setting $c_{n+1}=0$); we know that $d_{k} \geq 0$. Let $F_{k}(u)=\sum_{j=-k+1}^{k-1}(k-|j|) u^{j}$. Then $K(u)=\sum_{k=1}^{n} d_{k} F_{k}(u)$ by easy induction (or see Figure for a graphical illustration). So it suffices to prove that $F_{k}(u)$ is real and $F_{k}(u) \geq 0$ for $u \in S$. This is reasonably well-known (as $\frac{F_{k}}{k}$ is the Fejér kernel), and also very easy:

$$
\begin{gathered}
F_{k}(u)=\left(1+u+u^{2}+\cdots+u^{k-1}\right)\left(1+u^{-1}+u^{-2}+\cdots+u^{-(k-1)}\right)= \\
=\left(1+u+u^{2}+\cdots+u^{k-1}\right) \overline{\left(1+u+u^{2}+\cdots+u^{k-1}\right)}=\left|1+u+u^{2}+\cdots+u^{k-1}\right|^{2} \geq 0
\end{gathered}
$$

This completes the proof.

Problem 5.

Let n be a positive integer. An n-simplex in \mathbb{R}^{n} is given by $n+1$ points $P_{0}, P_{1}, \ldots, P_{n}$, called its vertices, which do not all belong to the same hyperplane. For every n-simplex S we denote by $v(S)$ the volume of S, and we write $C(S)$ for the center of the unique sphere containing all the vertices of S.

Suppose that P is a point inside an n-simplex S. Let S_{i} be the n-simplex obtained from S by replacing its i-th vertex by P. Prove that

$$
v\left(S_{0}\right) C\left(S_{0}\right)+v\left(S_{1}\right) C\left(S_{1}\right)+\cdots+v\left(S_{n}\right) C\left(S_{n}\right)=v(S) C(S) .
$$

Solution 1. We will prove this by induction on n, starting with $n=1$. In that case we are given an interval $[a, b]$ with a point $p \in(a, b)$, and we have to verify

$$
(b-p) \frac{b+p}{2}+(p-a) \frac{p+a}{2}=(b-a) \frac{b+a}{2},
$$

which is true.
Now let assume the result is true for $n-1$ and prove it for n. We have to show that the point

$$
X=\sum_{j=0}^{n} \frac{v\left(S_{j}\right)}{v(S)} O\left(S_{j}\right)
$$

has the same distance to all the points $P_{0}, P_{1}, \ldots, P_{n}$. Let $i \in\{0,1,2, \ldots, n\}$ and define the sets $M_{i}=\left\{P_{0}, P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}\right\}$. The set of all points having the same distance to all points in M_{i} is a line h_{i} orthogonal to the hyperplane E_{i} determined by the points in M_{i}. We are going to show that X lies on every h_{i}. To do so, fix some index i and notice that

$$
X=\frac{v\left(S_{i}\right)}{v(S)} O\left(S_{i}\right)+\frac{v(S)-v\left(S_{i}\right)}{v(S)} \cdot \underbrace{\sum_{j \neq i} \frac{v\left(S_{j}\right)}{v(S)-v\left(S_{i}\right)} O\left(S_{j}\right)}_{Y}
$$

and $O\left(S_{i}\right)$ lies on h_{i}, so that it is enough to show that Y lies on h_{i}.
A map $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}^{n}$ will be called affine if there are points $A, B \in \mathbb{R}^{n}$ such that $f(\lambda)=\lambda A+(1-\lambda) B$. Consider the ray g starting in P_{i} and passing through P. For $\lambda>0$ let $P_{\lambda}=(1-\lambda) P+\lambda P_{i}$, so that P_{λ} is an affine function describing the points of g. For every such λ let S_{j}^{λ} be the n-simplex obtained from S by replacing the j-th vertex by P_{λ}. The point $O\left(S_{j}^{\lambda}\right)$ is the intersection of the fixed line h_{j} with the hyperplane orthogonal to
g and passing through the midpoint of the segment $\overline{P_{i} P_{\lambda}}$ which is given by an affine function. This implies that also $O\left(S_{j}^{\lambda}\right)$ is an affine function. We write $\varphi_{j}=\frac{v\left(S_{j}\right)}{v(S)-s\left(S_{i}\right)}$, and then

$$
Y_{\lambda}=\sum_{j \neq i} \varphi_{j} O\left(S_{j}^{\lambda}\right)
$$

is an affine function. We want to show that $Y_{\lambda} \in h_{i}$ for all λ (then specializing to $\lambda=1$ gives the desired result). It is enough to do this for two different values of λ.

Let g intersect the sphere containing the vertices of S in a point Z; then $Z=P_{\lambda}$ for a suitable $\lambda>0$, and we have $O\left(S_{j}^{\lambda}\right)=O(S)$ for all j, so that $Y_{\lambda}=O(S) \in h_{i}$. Now let g intersect the hyperplane E_{i} in a point Q; then $Q=P_{\lambda}$ for some $\lambda>0$, and Q is different from Z. Define T to be the ($n-1$)-simplex with vertex set M_{i}, and let T_{j} be the $(n-1)$-simplex obtained from T by replacing the vertex P_{j} by Q. If we write v^{\prime} for the volume of ($n-1$)-simplices in the hyperplane E_{i}, then

$$
\begin{aligned}
\frac{v^{\prime}\left(T_{j}\right)}{v^{\prime}(T)} & =\frac{v\left(S_{j}^{\lambda}\right)}{v(S)}=\frac{v\left(S_{j}^{\lambda}\right)}{\sum_{k \neq i} v\left(S_{k}^{\lambda}\right)} \\
& =\frac{\lambda v\left(S_{j}\right)}{\sum_{k \neq i} \lambda v\left(S_{k}\right)}=\frac{v\left(S_{j}\right)}{v(S)-v\left(S_{i}\right)}=\varphi_{j} .
\end{aligned}
$$

If p denotes the orthogonal projection onto E_{i} then $p\left(O\left(S_{j}^{\lambda}\right)\right)=O\left(T_{j}\right)$, so that $p\left(Y_{\lambda}\right)=\sum_{j \neq i} \varphi_{j} O\left(T_{j}\right)$ equals $O(T)$ by induction hypothesis, which implies $Y_{\lambda} \in p^{-1}(O(T))=h_{i}$, and we are done.
Solution 2. For $n=1$, the statement is checked easily.
Assume $n \geq 2$. Denote $O\left(S_{j}\right)-O(S)$ by q_{j} and $P_{j}-P$ by p_{j}. For all distinct j and k in the range $0, \ldots, n$ the point $O\left(S_{j}\right)$ lies on a hyperplane orthogonal to p_{k} and P_{j} lies on a hyperplane orthogonal to q_{k}. So we have

$$
\left\{\begin{array}{l}
\left\langle p_{i}, q_{j}-q_{k}\right\rangle=0 \\
\left\langle q_{i}, p_{j}-p_{k}\right\rangle=0
\end{array}\right.
$$

for all $j \neq i \neq k$. This means that the value $\left\langle p_{i}, q_{j}\right\rangle$ is independent of j as long as $j \neq i$, denote this value by λ_{i}. Similarly, $\left\langle q_{i}, p_{j}\right\rangle=\mu_{i}$ for some μ_{i}. Since $n \geq 2$, these equalities imply that all the λ_{i} and μ_{i} values are equal, in particular, $\left\langle p_{i}, q_{j}\right\rangle=\left\langle p_{j}, q_{i}\right\rangle$ for any i and j.

We claim that for such p_{i} and q_{i}, the volumes

$$
V_{j}=\left|\operatorname{det}\left(p_{0}, \ldots, p_{j-1}, p_{j+1}, \ldots, p_{n}\right)\right|
$$

and

$$
W_{j}=\left|\operatorname{det}\left(q_{0}, \ldots, q_{j-1}, q_{j+1}, \ldots, q_{n}\right)\right|
$$

are proportional. Indeed, first assume that p_{0}, \ldots, p_{n-1} and q_{0}, \ldots, q_{n-1} are bases of \mathbb{R}^{n}, then we have

$$
\begin{aligned}
V_{j} & =\frac{1}{\left|\operatorname{det}\left(q_{0}, \ldots, q_{n-1}\right)\right|}\left|\operatorname{det}\left(\left(\left\langle p_{k}, q_{l}\right\rangle\right)\right)_{\substack{k \neq j \\
l<n}}\right|= \\
& =\frac{1}{\left|\operatorname{det}\left(q_{0}, \ldots, q_{n-1}\right)\right|}\left|\operatorname{det}\left(\left(\left\langle p_{k}, q_{l}\right\rangle\right)\right)_{\substack{l \neq j \\
k<n}}\right|=\left|\frac{\operatorname{det}\left(p_{0}, \ldots, p_{n-1}\right)}{\operatorname{det}\left(q_{0}, \ldots, q_{n-1}\right)}\right| W_{j} .
\end{aligned}
$$

If our assumption did not hold after any reindexing of the vectors p_{i} and q_{i}, then both p_{i} and q_{i} span a subspace of dimension at most $n-1$ and all the volumes are 0 .

Finally, it is clear that $\sum q_{j} W_{j} / \operatorname{det}\left(q_{0}, \ldots, q_{n}\right)=0$: the weight of p_{j} is the height of 0 over the hyperplane spanned by the rest of the vectors q_{k} relative to the height of p_{j} over the same hyperplane, so the sum is parallel to all the faces of the simplex spanned by q_{0}, \ldots, q_{n}. By the argument above, we can change the weights to the proportional set of weights $V_{j} / \operatorname{det}\left(p_{0}, \ldots, p_{n}\right)$ and the sum will still be 0 . That is,

$$
\begin{aligned}
0 & =\sum q_{j} \frac{V_{j}}{\operatorname{det}\left(p_{0}, \ldots, p_{n}\right)}=\sum\left(O\left(S_{j}\right)-O(S)\right) \frac{v\left(S_{j}\right)}{v(S)}= \\
& =\frac{1}{v(S)}\left(\sum O\left(S_{j}\right) v\left(S_{j}\right)-O(S) \sum v\left(S_{j}\right)\right)=\frac{1}{v(S)}\left(\sum O\left(S_{j}\right) v\left(S_{j}\right)-O(S) v(S)\right),
\end{aligned}
$$

q.e.d.

