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Second day — August 2, 1997

Problems and Solutions

Problem 1.
Let f be a C3(R) non-negative function, f(0)=£'(0)=0, 0 < f”(0).
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for z # 0 and g(0) = 0. Show that ¢ is bounded in some neighbourhood of 0.
Does the theorem hold for f € C?(R)?

Solutiorll.
Let ¢ = §f”(0). We have

Let

()2 —2f1"
2(FPVT

where
flz)= cx? + O(ac?’), f'(z) = 2cx + 0(332), f"(z) = 2¢+ O(x).
Therefore (f'(z))? = 4c22? 4+ O(2?),

2f (x) f" () = 4c*2® + O(2®)

2(f'(2))*\/ f(2) = 2(4c*a® + O(2”))|z|\ /e + O(a).

g is bounded because

and

2(f'(2))*V/F ()

jzf?

and f'(x)? — 2f(2)f"(z) = O(a?).

The theorem does not hold for some C2-functions.
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Let f(z) = (z + |z|3/?)? = 2% + 222 /|z] + ||, so f is C%. For = > 0,
o) = L 1\ 1 1 3 1
xTr) = — —_— = —-— — ¢ — f — — —

g 2\1+ 3z 2 1+3/2)2 4 Vza—o

Problem 2.
Let M be an invertible matrix of dimension 2n x 2n, represented in
block form as

| A B 1 | E F
M—[CDl and M _[GH]'

Show that det M.det H = det A.

Solution.
Let I denote the identity n x n matrix. Then

A B I F A 0
detM.detH—deth D]-detlo H]—detlc I]—detA.

Problem 3. )
> (—1)""*sin (1
Show that > (=1) sin (log n)
n=1 na

converges if and only if « > 0.

Solution. low ¢
Set f(t) = sin (log {) We have

te '

A cos (logt)
i) = sa1Sin (logt) + e

1+«

So [f'(t)] < pry

for @« > 0. Then from Mean value theorem for some
1

+a . 1+«
0 € (0,1) weget |f(n+1)—f(n)| = |f'(n+0)| < ey Since ZW < 400

for « > 0 and f(n) —2 0 we get that § (=) 1f(n) = § (f(2n—1)—f(2n))
converges. =l =t

in (1

Now we have to prove that M does not converge to 0 for a < 0.
n
It suffices to consider oo = 0.
We show that a,, = sin(logn) does not tend to zero. Assume the
1 1

contrary. There exist k, € N and )\, € 3 5} for n > e? such that o8N _

T

kn + An. Then |a,| = sinw|\,|. Since a,, — 0 we get A\, — 0.



We have k11 — ky, =

_log(n +1) —logn
B i

1 1
— ()\n—f—l — )\n) = —log (1 + —) — ()\n—f—l — )\n)
s n

Then |kp+1 — kn| < 1 for all n big enough. Hence there exists ng so that
logn

kn = kp, for n > ng. So = kyp, + Ay for n > ng. Since A, — 0 we get

contradiction with logn — oo.

Problem 4.
a) Let the mapping f : M, — R from the space

2
M, = R"™ of n x n matrices with real entries to reals be linear, i.e.:

(1) f(A+B) = f(A)+ f(B), [(cA)=cf(A)

for any A, B € M, ¢ € R. Prove that there exists a unique matrix C € M,
such that f(A) = tr(AC) for any A € M,. (If A = {a;}};_; then
n
tl”(A) == Zl a“)
1=
b) Suppose in addition to (1) that

(2) F(A.B) = f(B.A)

for any A, B € M,,. Prove that there exists A € R such that f(A4) = A\.tr(A).

Solution.

a) If we denote by E;; the standard basis of M,, consisting of elementary
matrix (with entry 1 at the place (i,7) and zero elsewhere), then the entries
cij of C can be defined by ¢;; = f(Ej;). b) Denote by L the n? —1-dimensional
linear subspace of M,, consisting of all matrices with zero trace. The elements
E;; with i # j and the elements E;; — FEyp,, ¢ = 1,...,n — 1 form a linear basis
for L. Since

E;,; = Eij-Ejj — Ejj-Eij7 Z;éj
Eii - Enn = Eannz - Ejan‘znaZ = 17 s, — 17

then the property (2) shows that f is vanishing identically on L. Now, for
1

any A € M,, we have A — —tr(A).E € L, where FE is the identity matrix, and
n

therefore f(A) — % F(E).tr(A).



Problem 5.

Let X be an arbitrary set, let f be an one-to-one function mapping
X onto itself. Prove that there exist mappings ¢g1,92 : X — X such that
f=g10g92 and g1 0 g1 = id = g9 0 g2, where id denotes the identity mapping
on X.

Solution.
Let f" = fofo---of, fO =id, f7» = (f~1)" for every natural
—_—

n times

number n. Let T'(z) = {f™(z) : n € Z} for every € X. The sets T'(z) for
different x’s either coinside or do not intersect. Each of them is mapped by f
onto itself. It is enough to prove the theorem for every such set. Let A = T'(x).
If A is finite, then we can think that A is the set of all vertices of a regular

2
n polygon and that f is rotation by “T " Such rotation can be obtained as a
composition of 2 symmetries mapping the n polygon onto itself (if n is even

then there are axes of symmetry making il angle; if n = 2k + 1 then there
n

2
are axes making il angle). If A is infinite then we can think that A = Z

and f(m) =m+ 1 for every m € Z. In this case we define g; as a symmetry

relative to 3 J2asa symmetry relative to 0.

Problem 6.
Let f :[0,1] — R be a continuous function. Say that f “crosses the
axis” at x if f(x) = 0 but in any neighbourhood of x there are y,z with

f(y) <0and f(z) > 0.

a) Give an example of a continuous function that “crosses the axis”
infiniteley often.

b) Can a continuous function “cross the axis” uncountably often?

Justify your answer.

Solution.

a) f(z) = x sin —.

) f() = sin

b) Yes. The Cantor set is given by

C={ze0,l):a=) b3, b €{0,2}}.
j=1

S8 .
There is an one-to-one mapping f : [0,1) — C. Indeed, for z = Y a;277,
j=1
S .
a; € {0,1} we set f(x) = > (2a;)377. Hence C is uncountable.

j=1



For k=1,2,...andi=0,1,2,...,2""1 — 1 we set

k—2 k—2
ag;=37F (6 > a3 + 1) , bpi=3"" (6 > a3 + 2) :

J=0 J=0

k=2
where i = } a;2’, a; € {0,1}. Then
=0

oo 2k—1_1
O,O\NC =) U (arsbra),
k=1 =0

i.e. the Cantor set consists of all points which have a trinary representation

with 0 and 2 as digits and the points of its compliment have some 1’s in their
k—1

trinary representation. Thus, 'Uo (ag,i, bgi) are all points (exept ay ;) which
1=
have 1 on k-th place and 0 or 2 on the j-th (j < k) places.

Noticing that the points with at least one digit equals to 1 are every-
where dence in [0,1] we set

[e.e]

f@) = (=1)rg(x).

k=1

where gj, is a piece-wise linear continuous functions with values at the knots
O + bk7' _
Ik (%) =27, g1(0) = g(1) = gr(ar) = gr(brs) = 0,
i=0,1,...,2F1 1.
Then f is continuous and f “crosses the axis” at every point of the
Cantor set.



